Abstract:
An interrupter unit (1) for gas blast circuit breakers has a central axis A and comprises a first contact portion (10) with arcing contact (12), a second contact portion (20) comprising a cylinder shaft (22) and a pin contact (25), an insulating nozzle (30) fixed to the first contact portion (10) and having a first section (32) surrounding the arcing contact (12), an intermediate cylindrical section (34) and a divergent section (36). A heating channel (40) with circumferential opening (42) leading into the nozzle (30) guides compressed gas into an arcing zone (50) during opening operation of the interrupter unit (1). At the circumferential opening (42) of the heating channel (40), a circumferential edge region (46) between a first side wall (60) of the heating channel (40) and a wall of the cylindrical nozzle section (34) comprises at least one edge (47) with an enveloping radius of at most 2 mm.
Abstract:
A gas-insulated high-voltage switching device (1) is provided, which includes an arcing contact arrangement (5) having a first arcing zone member (30) and a second arcing zone member (20) that are movable relative to one another along an axis (B). An auxiliary nozzle (40) surrounds at least a part of a second arcing contact unit (21) and has an auxiliary nozzle throat (42) having an axial extension and allowing passage at least of an end of the first arcing contact unit (31). A main nozzle throat (52) has an axial extension sideways of the auxiliary nozzle throat (42) and allows passage at least of the end of the first arcing contact unit (31). A cross-sectional area of the main nozzle throat (52) is substantially decreasing in the direction away from the auxiliary nozzle throat (42) so as to form a substantially converging duct for the flow of an arc-extinguishing gas.
Abstract:
A gas-insulated low- or medium-voltage load break switch (1) comprises: a housing (2) defining a housing volume for holding an insulation gas at an ambient pressure; a first arcing contact (10) and a second arcing contact (20) arranged within the housing volume, the first and second arcing contacts (10, 20) being movable in relation to each other along an axis (12) of the load break switch (1) and defining a quenching region (52) in which an arc (50) is formed during a current breaking operation; a pressurizing system (40) having a pressurizing chamber (42) arranged within the housing volume for pressurizing a quenching gas from an ambient pressure p 0 to a quenching pressure p quench during the current breaking operation; and a nozzle system (30) arranged within the housing volume for blowing the pressurized quenching gas in a subsonic flow pattern from the pressurization chamber (42) onto the arc (50) formed in the quenching region (52) during the current breaking operation. The nozzle system (30) comprises at least one nozzle (33) arranged for blowing the quenching gas from an off-axis position predominantly radially inwardly onto the quenching region (52).
Abstract:
The disclosure relates to a gas-insulated load break switch(1) and a gas-insulated switchgear (100) comprising a gas-insulated load break switch (1). The gas-insulated load-break switch (1) has a housing (2) defining a housing volume for holding an insulation gas at an ambient pressure;a first main contact (80)and a second main contact (90), the first and second main contacts (80, 90) being movable in relation to each other in the axial direction (A) of the load break switch (1);a first arcing contact (10) and a second arcing contact (20), the first and secondarcing contacts (10, 20) being movable in relation to each other in an axial direction (A) of the load break switch (1) and defining an arcing region in which an arc is formed during a current breaking operation, wherein the arcing region is located, at least partially, radially inward from the first main contact;a pressurizing system (40) having a pressurizing chamber (42) for pressurizing a quenching gas during the current breaking operation;and a nozzle system (30) arranged and configured to blow the pressurized quenching gas onto the arc formed in the quenching region during the current breaking operation, the nozzle system (30) having a nozzle supply channel for supplying at least one nozzle (33) with the pressurized quenching gas. The first main contact (80) comprises at least one pressure release opening (85) formed such as to allow a flow of gas substantially in a radial outward direction, wherein the total area of the at least one pressure release opening (85) is configured such that during a supply of the pressurized quenching gas, a reduction of the flow of gas out of the pressure release opening (85) is suppressed.
Abstract:
A gas-insulated high-voltage switching device which includes an arcing contact arrangement having a first arcing zone member and a second arcing zone member that are movable relative to one another along an axis. An auxiliary nozzle surrounds at least a part of a second arcing contact unit and has an auxiliary nozzle throat having an axial extension and allowing passage at least of an end of the first arcing contact unit. A main nozzle throat has an axial extension sideways of the auxiliary nozzle throat and allows passage at least of the end of the first arcing contact unit. A cross-sectional area of the main nozzle throat is substantially decreasing in the direction away from the auxiliary nozzle throat so as to form a substantially converging duct for the flow of an arc-extinguishing gas.
Abstract:
The disclosure relates to a gas-insulated load break switch (1) and a gas-insulated switchgear (100) comprising a gas-insulated load break switch (1). The gas-insulated load-break switch (1) has a housing (2) defining a housing volume for holding an insulation gas at an ambient pressure; a first main contact (80) and a second main contact (90), the first and second main contacts (80, 90) being movable in relation to each other in the axial direction (A) of the load break switch (1); a first arcing contact (10) and a second arcing contact (20), the first and second arcing contacts (10, 20) being movable in relation to each other in an axial direction (A) of the load break switch (1) and defining an arcing region in which an arc is formed during a current breaking operation, wherein the arcing region is located, at least partially, radially inward from the first main contact; a pressurizing system (40) having a pressurizing chamber (42) for pressurizing a quenching gas during the current breaking operation; and a nozzle system (30) arranged and configured to blow the pressurized quenching gas onto the arc formed in the quenching region during the current breaking operation, the nozzle system (30) having a nozzle supply channel for supplying at least one nozzle (33) with the pressurized quenching gas. The first main contact (80) comprises at least one pressure release opening (85) formed such as to allow a flow of gas substantially in a radial outward direction, wherein the total area of the at least one pressure release opening (85) is configured such that during a supply of the pressurized quenching gas, a reduction of the flow of gas out of the pressure release opening (85) is suppressed.