Abstract:
The present invention relates to coding combinatorial chemical libraries synthesized on a plurality of solid supports by attaching 'tags' that comprise fluorine containing compounds in combinations and/or ratios. The tags can be decoded while attached to the solid support by fluorine nuclear magnetic resonance spectroscopy to follow the reaction history of individual beads, and to determine the particular member of the library that is attached on the bead.
Abstract:
The present invention discloses novel compounds, compositions, and methods for inhibiting retroviral proteases and in particular for inhibiting human immunodeficiency virus (HIV) protease. The present invention also relates to compositions and methods for treating a retroviral infection and in particular a HIV infection, and to processes for making such compounds and synthetic intermediates employed in these processes.
Abstract:
X-ray crystallography can be used to screen compounds that are not known ligands of a target biomolecule for their ability to bind the target biomolecule. The method includes obtaining a crystal of a target biomolecule; exposing the target biomolecule crytal to one or more test samples; and obtaining an X-ray crystal diffraction pattern to determine whether a ligand/receptor complex is formed. The target is exposed to the test samples by either co-crystallizing a biomolecule in the presence of one or more test samples or soaking the biomolecule crystal in a solution of one or more test samples. In another embodiment, structural information from ligand/receptor complexes are used to design ligands that bind tighter, that bind more specifically, that have better biological activity or that have better safety profile. A further embodiment of the invention comprises identifying or designing biologically-active moieties by the instant process. In a further embodiment, a biomolecule crystal having an easily accessible active site is formed by co-crystallizing the biomolecule with a degradable ligand and degrading the ligand.
Abstract:
X-ray crystallography can be used to screen compounds that are not known ligands of a target biomolecule for their ability to bind the target biomolecule. The method includes obtaining a crystal of a target biomolecule; exposing the target biomolecule crytal to one or more test samples; and obtaining an X-ray crystal diffraction pattern to determine whether a ligand/receptor complex is formed. The target is exposed to the test samples by either co-crystallizing a biomolecule in the presence of one or more test samples or soaking the biomolecule crystal in a solution of one or more test samples. In another embodiment, structural information from ligand/receptor complexes are used to design ligands that bind tighter, that bind more specifically, that have better biological activity or that have better safety profile. A further embodiment of the invention comprises identifying or designing biologically-active moieties by the instant process. In a further embodiment, a biomolecule crystal having an easily accessible active site is formed by co-crystallizing the biomolecule with a degradable ligand and degrading the ligand.
Abstract:
A compound of formula (I) is disclosed as an HIV protease inhibitor. Methods and compositions for inhibiting an HIV infection are also disclosed.
Abstract:
The present invention relates to a process of coding and identifying individual members of a chemical combinatorial library synthesized on a plurality of solid supports which undergo mix and split synthesis. The process provides for tagging the solid supports with a coding identifier that is attached to the solid support and which can be decoded by infrared or Raman spectroscopy when directly attached to the support.
Abstract:
The present invention relates to a process of coding and identifying individual members of a chemical combinatorial library synthesized on a plurality of solid supports which undergo mix and split synthesis. The process provides for tagging the solid supports with a coding identifier that is attached to the solid support and which can be decoded by infrared or Raman spectroscopy when directly attached to the support.