Abstract:
A differential string DAC is provided including a coarse DAC which includes a plurality of coarse resistors connected in series between first and second reference voltage leads. A positive sub-DAC includes a plurality of positive sub-DAC cells, each positive sub-DAC cell including a multitude of series-connected fine resistors. A negative sub-DAC includes a plurality of negative sub-DAC cells, each negative sub-DAC cell including a multitude of series-connected fine resistors. Each coarse resistor is electrically connected in parallel with one positive sub-DAC cell and one negative sub-DAC cell. The positive sub-DAC cell and negative sub-DAC cell are substantially symmetrically disposed about the corresponding coarse resistor. Due to the differential arrangement and symmetrical layout of the DAC, INL errors due to process gradients in one direction across the DAC are greatly reduced. Process gradients in a second orthogonal direction are not of great concern as they cause much smaller INL errors.
Abstract:
A gain stage for use in an amplifier which provides a rail-to-rail output signal. The gain stage includes a first transistor having a base, an emitter and a collector, the base being coupled to an input signal applied to the gain stage and the emitter being coupled to a first source of operating potential; a second transistor having a base, and emitter and a collector, the collector being coupled to the collector of the first transistor for providing the output signal, the emitter being coupled to a second source of operating potential; and a third transistor having a base, an emitter and a collector, the emitter being coupled to the input signal, the base being coupled to a bias voltage, and the collector being coupled to the second operating potential and the base of the second transistor for providing a drive signal thereto allowing the output signal to swing substantially between the first and second sources of operating potential.
Abstract:
A CMOS comparator which includes a capacitor connected in an electrical path between two amplification stages. The comparator also includes a voltage source, and a switch is provided between the voltage source and the input of the second stage. A variability of electrical parameter of the voltage source can be matched with a parameter of the amplification stage. The comparator can also include another switch between another voltage source and a third stage, with the two voltage sources providing different voltages. A comparator gain stage includes circuitry for deriving a differential current from the two voltages. Circuitry is also provided for loading the differential current to derive an amplified difference voltage. Further circuitry is provided for bypassing the loading circuitry to reduce a quiescent voltage drop associated with the loading circuitry.
Abstract:
A system includes a digital-to-analog converter circuit and a calibration circuit. The digital-to-analog converter circuit includes a gain control circuit providing volume adjustment. The system includes a calibration mode and a normal mode of operation. During calibration, a correction value associated with the gain control circuit is measured by the calibration circuit and stored. During normal operation, the stored correction value is combined with the input before provision of the same to the DAC circuit such that, for a predetermined input of midscale code, the desired system output remains constant despite any change in the volume setting of the gain control circuit.
Abstract:
A multi-phase, multi-access pipeline memory system includes a numer, n, of processors (14, 16); a pipeline memory (12) including a latch (28); and a bus (30, 32, 34, 36) for interconnecting the processors and pipeline memory; a clock circuit (18) responsive to a system clock signal (20) into n phases for providing multiple clock signals (22, 24, 26) corresponding to the n phases of the system clock signal (20) for operating each processor (14, 16) to allow data and address to be transferred only during its assigned phase thereby enabling the memory (12) and each processor (14, 16) to operate at the system clock rate while allowing n accesses to the memory (12) during each system clock signal period, one access for each processor (14, 16).
Abstract:
A biquad switched capacitor filter is preferably utilized as the output filter in a sigma delta digital-to-analog converter. The switched capacitor filter uses a cross-coupled switched capacitor circuit which delivers charge to the capacitors on both phases of the clock. As a result, the sizes of the capacitors can be reduced by a factor of two, while delivering the same charge as a single sampling circuit. By using the cross-coupled switching circuit everywhere in the filter, the sensitivity to capacitor mismatches is substantially reduced. The clock phases applied to the stages of the filter are alternated so that there is a one clock cycle delay around each loop containing two filter stages, thereby insuring the stability of the filter.
Abstract:
An anti-false triggering system for a pulse width modulation system includes a ramp generator (108) for generating a ramp signal having a ramp portion and a rest portion; a latch enable signal generator (110) for providing a latch enable signal only during the ramp portion; and a pulse edge modulator (106) responsive to the ramp portion for providing a pulse width modulated signal with at least one of its edges modulated, the pulse edge modulator (106) being enabled by the latch enable signal only during the ramp portion for suppressing false triggering during the rest portion of the ramp signal.
Abstract:
An integrated circuit chip is provided with at least a component on it. The component may be, for instance, an analog-to-digital converter or a digital-to-analog converter. The component has at least one connection leading off the chip to facilitate communication between the component and an external device. The chip additionally includes an active element, such as a variable resistor, for compensating for non-ideal electrical impedance experienced by signals at said connection.
Abstract:
An accelerometer comprising a microfabricated acceleration sensor and monolithically fabricated signal conditioning circuitry. The sensor comprises a differential capacitor arrangement formed by a pair of capacitors. Each capacitor has two electrodes, one of which it shares electrically in common with the other capacitor. One of the electrodes (e.g., the common electrode) is movable and one of the electrodes is stationary in response to applied acceleration. The electrodes are all formed of polysilicon members suspended above a silicon substrate. Each of the capacitors is formed of a plurality of pairs of electrode segments electrically connected in parallel and, in the case of the movable electrodes, mechanically connected to move in unison. When the substrate is accelerated, the movable electrodes move such that the capacitance of one of the capacitors increases, while that of the other capacitor decreases. The two capacitors are connected to signal conditioning circuitry which converts this differential capacitance into a corresponding voltage. Both open loop and force-balance operation are shown.
Abstract:
A termination circuit for an R-2R ladder network for producing weighted currents, the 2R terminating resistor of the ladder being connected to an excitation source voltage which is 2(kT/q)ln2 closer to the supply voltage than the emitter of the current source in the last (i.e., least significant) leg of the ladder. The excitation source is fabricated with just one type of bipolar transistor and does not require an amplifier or frequency compensation capacitor(s). The excitation source is a simple circuit requiring only five transistors, at least one of which has an emitter area which is a multiple of the emitter areas of the current source transistors. The base-emitter voltages of the transistors in the excitation source are connected in a voltage loop that goes from a voltage VLSB at the emitter of the current source transistor connected to the least significant ladder network shunt resistor to a voltage, Vt, which would be equal to VLSB, if all six transistors in the loop had the same emitter area, but which deviates therefrom by 2(kT/q)ln2 due to the differences in the emitter areas.