Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
User Equipment (UE) based forced inter radio access technology (iRAT) handover. A connection to a network may be established via a first cell operating according to a first radio access technology (RAT). It may be determined to initiate a handover of the UE from the first cell to a second cell operating according to a second RAT. An indication may be transmitted to the network to initiate a handover of the UE from the first cell to the second cell. An indication may be received from the network to perform handover of the UE from the first cell to the second cell in response to the indication to initiate the handover. Handover of the UE from the first cell to the second cell may be performed in response to the indication to perform the handover. Handover may include releasing the connection to the network via the first cell and establishing a connection to the network via the second cell.
Abstract:
A method for handling a missed rank report during a tune-away period is provided. The method can include a wireless communication device tuning away from a first network to a second network for a tune-away period; returning to the first network from the tune-away period; determining that a scheduled rank report was missed during the tune-away period; generating a Channel State Indicator (CSI) report based on a previously defined Rank Indicator (RI) value known to the first network in response to missing the scheduled rank report; and sending the CSI report to the first network.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and additional optimization requirements. The new device category may identify the UE device as a wearable device. According to some embodiments, LTE category M may be extended to support non-MTC operations performed by wearable devices. For example, the new device category may support UE mobility and may disallow access barring. Additional extensions may be implemented in response to an indication by the UE that the UE is implementing a specific application, such as VoLTE or a near real-time application, such as audio streaming. In some scenarios, the indication may include the UE indicating a specific QCI value. In some scenarios, the indication may include the UE attaching to a specific APN.
Abstract:
This disclosure relates to techniques for adaptive C-DRX Management. A wireless device and a cellular base station may establish a cellular link. According to some embodiments, the base station may monitor upcoming traffic with the wireless device. Based at least in part on the upcoming traffic for the wireless device, the base station may provide a command indicating to the wireless device to enter C-DRX. The command may further indicate to the wireless device a number of C-DRX cycles through which to remain in a low power state.
Abstract:
Techniques are disclosed relating to informing a network that a UE desires packet-switched voice communication. In one embodiment, a method includes receiving first information from a UE device requesting voice communication over a packet-switched network. In this embodiment, the method further includes transmitting, in response to the first information, second information to a base station serving the UE device, wherein the second information indicates that the UE device is requesting voice communication over the packet-switched network. In this embodiment, the transmitting is performed prior to establishment of a dedicated bearer by the base station for the UE device. In this embodiment, the second information operates to configure communications between the base station and the UE device to provide a particular quality of service for the packet-switched voice communication using the dedicated bearer.
Abstract:
A station that performs a method to coordinate transmissions of scheduling requests (SR) with OnDurations of a connected discontinuous reception (C-DRX) cycle. The station receives a packet at a packet arrival time relative to a schedule indicating the SR opportunities and onDurations, the SR opportunities occurring at a first interval, the onDurations occurring at a second interval, the first interval being less than the second interval. The station determines an SR opportunity subsequent to the packet arrival time that precedes an entirety of a subsequent onDuration, such that a transmission duration to transmit the SR and the packet maximally overlaps with the selected onDuration. A sleep mode of the processor of the station is used until a time associated with the selected SR opportunity. An active mode of the processor is used to transmit the SR and receive control channel information during the onDuration.
Abstract:
A link-budget-limited wireless communication device (UE) may implement improved radio link monitoring procedures for enhancing the link-budget of the UE. The UE may monitor the radio link and may determine whether the radio link can support a lowest acceptable link quality according to a hysteresis-based comparison that uses threshold values to determine error rates associated with a physical control channel. The UE may also identify itself to the network as a link-budget-limited device, and the network may enable special link-budget enhancing features for the UE, including boosting the power of the resource elements (REs) carrying physical channel signaling/data to the UE. The UE may detect the presence of power boost and may estimate/determine the power boost level. The UE may modify the threshold values based on the power boost detection and/or results of the power boost level estimation/determination, and may use the modified threshold values for determining radio link quality during radio link monitoring.
Abstract:
Techniques are disclosed relating to broadcasting and receiving system information in a radio access network (RAN). In one embodiment, a base station includes at least one antenna, at least one radio, configured to perform cellular communication using a radio access technology (RAT), and one or more processors coupled to the radio. In this embodiment, the base station is configured to broadcast first system information blocks (SIBs) encoded using a first coding rate and a first identifier. In this embodiment, the base station is also configured to broadcast second SIBs encoded using a second coding rate that is lower than the first coding rate and a second identifier. In this embodiment, the second SIBs include only a portion of the information included in the first SIBs and the second SIBs are usable by user equipment devices (UEs) having a limited link budget to determine access parameters for the base station.