Abstract:
A method to be performed at a station configured to connect to a Long Term Evolution radio access network (LTE-RAN) to utilize enhanced Multimedia Broadcast Multicast Services using a Multicast-Broadcast Single-Frequency Network (MBSFN). The method including receiving a MBSFN subframe having a MBSFN subframe structure including a plurality of Orthogonal Frequency-Division Multiplexing (OFDM) symbols, a first one of the OFDM symbols having a first reference symbol inserted therein, a second one of the OFDM symbols having a second reference symbol inserted therein, determining a rate of change of channel conditions being experienced by the station and performing a non-destaggered channel estimation when the rate of change of channel conditions is greater than a predetermined threshold, the non-destaggered channel estimation using a first Channel Impulse Response (CIR) at the first OFDM symbol and a second CIR at the second OFDM symbol.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
A wireless communication system is presented in which subframe-specific link adaptation is performed. A mobile device can transmit a signal that informs a base station whether a particular subframe was received successfully. Additionally the mobile device can calculate channel state information (CSI) for a subframe and report the CSI to a base station. The reported CSI may or may not include an indicator for informing the base station about from which type of subframe the CSI was derived. The base station can receive the signal, the CSI and/or the indicator. Based on what information the base station has received, it performs subframe-specific BLER filtering and subframe-specific link adaptation scheduling and MCS adjustments.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry in a wireless communication device. The wireless communication device establishes a connection to a wireless network using wireless circuitry that includes a first radio frequency receive signal chain and a second radio frequency receive signal chain. The wireless communication device monitors uplink and downlink traffic activity communicated between the wireless communication device and the wireless network and measures downlink radio frequency receive signal conditions at the wireless communication device. The wireless communication device reconfigures the wireless circuitry to enable receive diversity or to disable receive diversity at the wireless communication device based on the monitored traffic activity and the measured downlink radio frequency receive signal conditions.
Abstract:
Apparatus and methods for dynamically adjusting radio frequency circuitry in a wireless communication device are disclosed. The wireless communication device can receive downlink communication using carrier aggregation through a primary component carrier and a secondary component carrier. When carrier aggregation is not enabled, the wireless communication device adjusts the radio frequency circuitry based on default values. When carrier aggregation is enabled, the wireless communication device evaluates radio frequency conditions for the primary and secondary component carriers and adjusts the radio frequency circuitry based on whether uplink and/or downlink communication is power constrained. When uplink communication is power constrained, the wireless communication device adjusts the radio frequency circuitry for optimal performance via the primary component carrier, and when uplink communication is not power constrained, the wireless communication device adjusts the radio frequency circuitry for optimal performance via the combination of the primary and secondary component carriers used for carrier aggregation.
Abstract:
A device and method selects an antenna configuration. The method performed at a user equipment includes determining at least one communication functionality that is being used, each communication functionality configured to utilize at least one antenna in a multi-antenna arrangement of the user equipment. The method includes receiving a first indication of whether a cellular communication functionality is being used, the cellular communication functionality configured to utilize at least one antenna in the multi-antenna arrangement. The method includes receiving a second indication of whether a coexistence condition is present. The method includes determining an antenna configuration for the multi-antenna arrangement to be used by the determined communication functionality based upon the determined communication functionality, the first indication, and the second indication. The method includes configuring the multi-antenna arrangement for the determined communication functionality based upon the antenna configuration.
Abstract:
Methods and apparatus for network-based detection and mitigation of hybrid client device reception outage events. For example, in one embodiment, a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. During these tuned-away periods, the network adjusts operation to mitigate adverse effects (e.g., underutilization of radio resources, synchronization loss, etc.).
Abstract:
Methods and apparatuses to reduce a time to scan one or more frequency channel bands by a wireless communication device are disclosed. The methods include performing, at the wireless communication device, a power scan of a band of radio frequencies; determining a maximum power level for a frequency channel in the band of radio frequencies found by the power scan; comparing the maximum power level to a threshold power level; in an instance in which the maximum power level does not equal or exceed the threshold power level, attempting acquisition on a first number of frequency channels; and in an instance in which the maximum power equals or exceeds the threshold power level, attempting acquisition on a second number of frequency channels. The second number of frequency channels is greater than the first number of frequency channels.
Abstract:
A method for reducing power consumption by a wireless communication device is disclosed. The method can include the wireless communication device performing a first measurement of an alternative cell during a first measurement gap; sending a first measurement report generated based on the first measurement to the serving cell; storing the first measurement report; determining a mobility state of the wireless communication device; comparing the mobility state to a mobility threshold criterion; resending the first measurement report to the serving network as a report for a second measurement gap in an instance in which the mobility state satisfies the mobility criterion; and performing a second measurement of the alternative cell during the second measurement gap and sending a second measurement report generated based on the second measurement to the serving cell in an instance in which the mobility state does not satisfy the mobility threshold criterion.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on a comparison between an offset at which CSF values are stable and an offset at which a CSF report is to be sent to a base station. If the CSF values are not stable by the time the CSF report is to be sent, a CSF report from a prior DRX cycle may be used. Alternatively, if the CSF value are stable by the time the CSF report is to be sent, a determination may be made to either generate a new CSF report or use a prior CSF report. The latter determination may be made based on various criteria, including channel conditions and DRX cycle length.