Abstract:
There is provided a positioning system for positioning an object in a lithographic apparatus. The positioning system includes a support, a position measurement device, a deformation sensor and a processor. The support is constructed to hold the object. The position measurement device is configured to measure a position of the support. The position measurement device includes at least one position sensor target and a plurality of position sensors to cooperate with the at least one position sensor target to provide a redundant set of position signals representing the position of the support. The deformation sensor is arranged to provide a deformation signal representing a deformation of one of the support and the position measurement device. The processor is configured to calibrate one of the position measurement device and the deformation sensor based on the deformation signal and the redundant set of position signals.
Abstract:
A method for unloading a substrate from a support table configured to support the substrate, the method including: supplying gas to a gap between a base surface of the support table and the substrate via a plurality of gas flow openings in the support table, wherein during an initial phase of unloading the gas is supplied through at least one gas flow opening in an outer region of the support table and not through any gas flow opening in a central region of the support table radially inward of the outer region, and during a subsequent phase of unloading the gas is supplied through at least one gas flow opening in the outer region and at least one gas flow opening in the central region.
Abstract:
A lithographic apparatus has a support structure constructed to support a patterning device and associated pellicle, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam, and a projection system configured to project the patterned radiation beam onto a target portion of a substrate, wherein the support structure is located in a housing and wherein pressure sensors are located in the housing.
Abstract:
An imprint lithography apparatus is disclosed that includes an imprint template holder arranged to hold an imprint template, and a plurality of position sensors configured to measure change of the size and/or shape of the imprint template, wherein the position sensors are mechanically isolated from the imprint template. Also disclosed is a lithography method that includes using an imprint template to imprint a pattern onto a substrate, and measuring changes of the size and/or shape of the imprint template while imprinting the pattern onto the substrate.
Abstract:
An imprint lithography apparatus having a first frame to be mounted on a floor, a second frame mounted on the first frame via a kinematic coupling, an alignment sensor mounted on the second frame, to align an imprint lithography template arrangement with a target portion of a substrate, and a position sensor to measure a position of the imprint lithography template arrangement and/or a substrate stage relative to the second frame.
Abstract:
An immersion lithographic apparatus includes a projection system, a first table with a first planar surface and a second table with a second planar surface, the first and second planar surfaces being substantially coplanar, a liquid confinement system configured to spatially confine an immersion liquid to a volume with a first surface area that is coplanar with the first and second planar surfaces, and is substantially smaller than a second surface area of the top surface of the substrate, and a swap bridge member attached to the first table, the swap bridge member having an upper surface that is substantially coplanar with the first and second planar surfaces, wherein the upper surface of the swap bridge member is configured to serve as part of the liquid confinement system and to deform when the swap bridge member collides with the second table and to remain attached to the first table.
Abstract:
An imprint lithography apparatus having a first frame to be mounted on a floor, a second frame mounted on the first frame via a kinematic coupling, an alignment sensor mounted on the second frame, to align an imprint lithography template arrangement with a target portion of a substrate, and a position sensor to measure a position of the imprint lithography template arrangement and/or a substrate stage relative to the second frame.
Abstract:
An imprint lithography apparatus having a first frame to be mounted on a floor, a second frame mounted on the first frame via a kinematic coupling, an alignment sensor mounted on the second frame, to align an imprint lithography template arrangement with a target portion of a substrate, and a position sensor to measure a position of the imprint lithography template arrangement and/or a substrate stage relative to the second frame.
Abstract:
A support apparatus configured to support an object, the support apparatus includes a support body including an object holder to hold an object; an opening in the support body adjacent to an edge of the object holder; a channel in fluid communication with the opening via each of a plurality of passageways in the support body; and a passageway liner mounted in at least one of the plurality of passageways, the passageway liner being thermally insulating to substantially thermally decouple the support body from fluid in the at least one of the plurality of passageways.
Abstract:
An imprint lithography apparatus is disclosed that includes an imprint template holder arranged to hold an imprint template, and a plurality of position sensors configured to measure change of the size and/or shape of the imprint template, wherein the position sensors are mechanically isolated from the imprint template. Also disclosed is a lithography method that includes using an imprint template to imprint a pattern onto a substrate, and measuring changes of the size and/or shape of the imprint template while imprinting the pattern onto the substrate.