Abstract:
A method for determining a correction for control of at least one manufacturing apparatus used in a manufacturing process for providing structures to a region on a substrate, the region including a plurality of sub-regions. The method includes obtaining measurement data relating to a process parameter of the manufacturing process for the region; and determining a correction for the manufacturing apparatus based on the measurement data. The correction is configured to maintain the process parameter within a specified range across a boundary between two of the sub-regions and/or to better correct the process parameter across the boundary between two of the sub-regions with respect to within the remainder of the region.
Abstract:
A method of determining a characteristic of one or more processes for manufacturing features on a substrate, the method including: obtaining image data of a plurality of features on a least part of at least one region on a substrate; using the image data to obtain measured data of one or more dimensions of each of at least some of the plurality of features; determining a statistical parameter that is dependent on the variation of the measured data of one or more dimensions of each of at least some of the plurality of features; determining a probability of defective manufacture of features in dependence on a determined number of defective features in the image data; and determining the characteristic of the one or more processes to have the probability of defective manufacture of features and the statistical parameter.
Abstract:
A method of configuring a step of scanning a beam of photons or particles across a patterning device for exposing a pattern onto a substrate, wherein the method includes determining a spatial resolution of a patterning correction configured to improve quality of the exposing, and determining a spatial dimension of the beam based on the determined spatial resolution of the patterning correction.
Abstract:
Disclosed is an apparatus and method for performing a measurement operation on a substrate in accordance with one or more substrate alignment models. The one or more substrate alignment models are selected from a plurality of candidate substrate alignment models. The apparatus, which may be a lithographic apparatus, includes an external interface which enables selection of the substrate alignment model(s) and/or alteration of the substrate alignment model(s) prior to the measurement operation.
Abstract:
A reticle is loaded into a lithographic apparatus. The apparatus performs measurements on the reticle, so as to calculate alignment parameters for transferring the pattern accurately to substrates. Tests are performed to detect possible contamination of the reticle or its support. Either operation proceeds with a warning, or the patterning of substrates is stopped. The test uses may use parameters of the alignment model itself, or different parameters. The integrity parameters may be compared against reference values reflecting historic measurements, so that sudden changes in a parameter are indicative of contamination. Integrity parameters may be calculated from residuals of the alignment model. In an example, height residuals are used to calculate parameters of residual wedge (Rx′) and residual roll (Ryy′). From these, integrity parameters expressed as height deviations are calculated and compared against thresholds.