Abstract:
Disclosed is a substrate and associated patterning device. The substrate comprises at least one target arrangement suitable for metrology of a lithographic process, the target arrangement comprising at least one pair of similar target regions which are arranged such that the target arrangement is, or at least the target regions for measurement in a single direction together are, centrosymmetric. A metrology method is also disclosed for measuring the substrate. A metrology method is also disclosed comprising which comprises measuring such a target arrangement and determining a value for a parameter of interest from the scattered radiation, while correcting for distortion of the metrology apparatus used.
Abstract:
A patterning device for patterning product structures onto a substrate and an associated substrate patterned using such a patterning device. The patterning device includes target patterning elements for patterning at least one target from which a parameter of interest can be inferred. The patterning device includes product patterning elements for patterning the product structures. The target patterning elements and product patterning elements are configured such that the at least one target has at least one boundary which is neither parallel nor perpendicular with respect to the product structures on the substrate.
Abstract:
Disclosed is a method for obtaining a computationally determined interference electric field describing scattering of radiation by a pair of structures comprising a first structure and a second structure on a substrate. The method comprises determining a first electric field relating to first radiation scattered by the first structure; determining a second electric field relating to second radiation scattered by the second structure; and computationally determining the interference of the first electric field and second electric field, to obtain a computationally determined interference electric field.
Abstract:
A method including performing a simulation to evaluate a plurality of metrology targets and/or a plurality of metrology recipes used to measure a metrology target, identifying one or more metrology targets and/or metrology recipes from the evaluated plurality of metrology targets and/or metrology recipes, receiving measurement data of the one or more identified metrology targets and/or metrology recipes, and using the measurement data to tune a metrology target parameter or metrology recipe parameter.
Abstract:
A method of determining edge placement error within a structure produced using a lithographic process, the method comprising the steps of: (a) receiving a substrate comprising a first structure produced using the lithographic process, the first structure comprising first and second layers, each of the layers having first areas of electrically conducting material and second areas of non-electrically conducting material; (b) receiving a target signal indicative of a first target relative position which is indicative of a target position of edges between the first areas and the second areas of the first layer relative to edges between the first areas and second areas of the second layer in the first structure during said lithographic process; (c) detecting scattered radiation while illuminating the first structure with optical radiation to obtain a first signal; and (d) ascertaining an edge placement error parameter on the basis of the first signal and the first target relative position.
Abstract:
A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets and small targets which are for measuring overlay. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
Abstract:
A method of determining a critical-dimension-related property, such as critical dimension (CD) or exposure dose, includes illuminating each of a plurality of periodic targets having different respective critical dimension biases, measuring intensity of radiation scattered by the targets, recognizing and extracting each grating from the image, determining a differential signal, and determining the CD-related property based on the differential signal, the CD biases and knowledge that the differential signal approximates to zero at a 1:1 line-to-space ratio of such periodic targets. Use of the determined CD-related property to control a lithography apparatus in lithographic processing of subsequent substrates. In order to use just two CD biases, a calibration may use measurements on a “golden wafer” (i.e. a reference substrate) to determine the intensity gradient for each of the CD pairs, with known CDs. Alternatively, the calibration can be based upon simulation of the sensitivity of intensity gradient to CD.
Abstract:
A target for determining a performance parameter of a lithographic process, the target comprising a first sub-target formed by at least two overlapping gratings, wherein the underlying grating of the first sub-target has a first pitch and the top lying grating of the first sub-target has a second pitch, at least a second sub-target formed by at least two overlapping gratings, wherein the underlying grating of the second sub-target has a third pitch and the top lying grating of the second sub-target has a fourth pitch.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
Overlay error of a lithographic process is measured using a plurality of target structures, each target structure having a known overlay bias. A detection system captures a plurality of images (740) representing selected portions of radiation diffracted by the target structures under a plurality of different capture conditions (λ1, λ2). Pixel values of the captured images are combined (748) to obtain one or more synthesized images (750). A plurality of synthesized diffraction signals are extracted (744) from the synthesized image or images, and used to calculate a measurement of overlay. The computational burden is reduced compared with extracting diffraction signals from the captured images individually. The captured images may be dark-field images or pupil images, obtained using a scatterometer.