Abstract:
The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. The system includes a monitoring mechanism that monitors one or more battery-usage parameters of the battery during use of the battery with the portable electronic device. The battery-usage parameters may include a battery age, a resting time, a swell rate, a temperature, a cell balance, a voltage, a current, usage data about how the battery has been cycled, and/or user input. The system also includes a management apparatus that adjusts a charge-termination voltage or a discharge-termination voltage of the battery based on the battery-usage parameters to manage a cycle life of the battery, the swell rate, and/or a runtime of the battery.
Abstract:
Some embodiments of the present invention provide a system for charging a series battery, wherein the series battery is comprised of a set of banks which are connected in series, so that the same charging current passes through each bank. During the charging process, the system measures a voltage across each bank in the set of banks. The system then compares the measured voltage with a target voltage for each bank, and adjusts the charging process based on results of the comparisons between the measured voltage and the target voltage.
Abstract:
A power conversion circuit for use in a portable electronic device having a battery (322) and one or more electronic subsystems (304, 306), the power conversion circuit comprising: an inductor (308); and a plurality of switching devices (310, 312, 314, 316, 318, 320; 330, 332, 336; 330, 336, 340, 344) configured to: responsive to availability of an input power source (302), operate in conjunction with the inductor (308) as a buck converter to charge the battery (322) from the input power source (302); and responsive to unavailability of the input power source, operate in conjunction with the inductor (308) as a boost converter to power the one or more electronic subsystems (304), (306) from the battery (322).
Abstract:
The disclosed embodiments relate to a system that implements a switched-capacitor power converter which is configured to actively control power loss while converting an input voltage to an output voltage. This system includes one or more switched-capacitor blocks (SCBs), wherein each SCB includes a first capacitor and a set of switching devices configured to couple a constant-potential terminal and a time-varying-potential terminal of the first capacitor between the input voltage, the output voltage and a reference voltage. The system also includes a clocking circuit which produces gate drive signals for switching transistors in the one or more SCBs. The system additionally includes a controller configured to actively control the gate drive signals from the clocking circuit to substantially minimize the power loss for the switched-capacitor power converter.
Abstract:
One embodiment of the present invention provides a system that switches from a first graphics processor to a second graphics processor to drive a display. During operation, the system receives a request to switch a signal source which drives the display from the first graphics processor to the second graphics processor. In response to the request, the system first configures the second graphics processor so that the second graphics processor is ready to drive the display. Next, the system switches the signal source that drives the display from the first graphics processor to the second graphics processor, thereby causing the second graphics processor to drive the display.