Abstract:
A method and system are described for powering a display controller in an electronic device. In the described embodiments, the display controller includes a display controller power management circuit directly connected to a battery.
Abstract:
The disclosed embodiments provide a system which starts up and shuts down a resonant oscillator circuit. During the start up process, a driving circuit uses a first clock signal to control a first phase output of the resonant oscillator circuit. At the same time, the driving circuit uses a second clock signal to control a second phase output of the resonant oscillator circuit, wherein the first and second clock signals have opposite phases. While the first and second phase outputs are being controlled, the system ramps up an input voltage, which is used to power the resonant oscillator circuit, wherein the ramping takes place across multiple initial oscillation periods. During the shut down process, the system shuts down the resonant oscillator circuit by ramping down the input voltage. After the input voltage has been ramped down, the system clamps the first and second phase outputs to a fixed voltage.
Abstract:
The disclosed embodiments provide a system that balances voltages between battery banks. The system includes a plurality of battery banks, including a first bank and a second bank, and a first capacitor with a first terminal and a second terminal. The system also includes a first set of switching devices which selectively couple the first and second terminals of the first capacitor to first and second terminals of the first bank, and to first and second terminals of the second bank. The system additionally includes a clocking circuit which generates clock signals with substantially non-overlapping clock phases, including a first phase and a second phase. This clocking circuit is configured to control the first set of switching devices, so that during the first phase the first and second terminals of the first capacitor are coupled to the first and second terminals of the first bank, respectively, and during the second phase the first and second terminals of the first capacitor are coupled to the first and second terminals of the second bank, respectively.
Abstract:
The disclosed embodiments relate to a system that implements a switched-capacitor power converter which is configured to actively control power loss while converting an input voltage to an output voltage. This system includes one or more switched-capacitor blocks (SCBs), wherein each SCB includes a first capacitor and a set of switching devices configured to couple a constant-potential terminal and a time-varying-potential terminal of the first capacitor between the input voltage, the output voltage and a reference voltage. The system also includes a clocking circuit which produces gate drive signals for switching transistors in the one or more SCBs. The system additionally includes a controller configured to actively control the gate drive signals from the clocking circuit to substantially minimize the power loss for the switched-capacitor power converter.
Abstract:
This system provides for efficiently converting between a lower input voltage and a higher output voltage The system includes a first capacitor with a higher and lower potential terminals, a first set of switching devices which selectively couple the higher potential and lower potential terminals of the first capacitor between input, output and base voltages, a resonant clocking circuit which generates clock signals with substantially non-overlapping clock phases, including a first phase and a second phase, and which controls the first set of switching devices so that during the first phase, the higher potential terminal of the first capacitor is coupled to the input voltage and the lower potential terminal of the first capacitor is coupled to the base voltage, and during the second phase, the higher potential terminal of the first capacitor is coupled to the output voltage and the lower potential terminal is coupled to the input voltage.
Abstract:
One embodiment of the present invention provides a system that switches between frame buffers which are used to refresh a display. During operation, the system refreshes the display from a first frame buffer which is located in a first memory. Upon receiving a request to switch frame buffers for the display, the system reconfigures data transfers to the display so that the display is refreshed from a second frame buffer which is located in a second memory.
Abstract:
One embodiment of the present invention provides a system that switches between frame buffers which are used to refresh a display. During operation, the system refreshes the display from a first frame buffer which is located in a first memory. Upon receiving a request to switch frame buffers for the display, the system reconfigures data transfers to the display so that the display is refreshed from a second frame buffer which is located in a second memory.
Abstract:
The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system provides a charging circuit for converting an input voltage from a power source into a set of output voltages for charging the battery and powering a low-voltage subsystem and a high-voltage subsystem in the portable electronic device. Upon detecting discharging of the battery in a low-voltage state, the system uses the charging circuit to directly power the low-voltage subsystem from a battery voltage of the battery and up-convert the battery voltage to power the high-voltage subsystem.
Abstract:
The disclosed embodiments provide a system that manages use of a battery (322) in a portable electronic device. During operation, the system provides a charging circuit (330, 334, 336, 340, 342, 344, 346) for converting an input voltage (Vbus) from a power source (302) into a set of output voltages (VHIn, VLO) for charging the battery (322) and powering a low-voltage subsystem (350) and a high-voltage subsystem (352, 354, 356) in the portable electronic device. Upon detecting discharging of the battery (322) in a low-voltage state, the system uses the charging circuit to directly power the low-voltage subsystem from a battery voltage of the battery and up-convert the battery voltage to power the high-voltage subsystem.
Abstract:
The disclosed embodiments provide a system that operates a power supply. During operation, the system disposes a first switching mechanism between a first output of a first power converter and two or more loads. Next, the system obtains two or more error signals for the two or more loads, wherein each error signal from the two or more error signals represents a difference between a load voltage of a load from the two or more loads and a first reference voltage for the load from a first set of reference voltages for driving the two or more loads using the first power converter. The system then uses the first switching mechanism to couple the load with a largest error signal from the two or more error signals to the first output. The disclosed embodiments also provide a system that operates a power supply. During operation, the system obtains power states of two or more loads coupled to two or more power converters in the power supply. Next, the system generates one or more control signals for a set of switching mechanisms to configure a coupling of the two or more loads to the two or more power converters through the switching mechanisms based on the power states.