Abstract:
A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
A touch sensitive device that can detect the amount of pressure being applied to a touch screen from a user or other external object is provided. A spacer of the touch screen can be coated with a layer of conductive material and the change in capacitance between the spacer and various circuit elements of the touch screen can be measured. The change in capacitance can be correlated to the amount of pressure being applied to the touch screen, thus providing a method to determine the pressure being applied. During operation of the device, the system can time multiplex touch, display and pressure sensing operations so as to take advantage of an integrated touch and display architecture.
Abstract:
An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
An organic light-emitting diode display may contain an array of display pixels. Each display pixel may have a respective organic light-emitting diode that is controlled by a drive transistor. At low temperatures, it may be necessary to increase the amount of current through an organic light-emitting diode to achieve a desired luminance level. In order to increase the current through the light-emitting diode, the ground voltage level may be lowered. However, this may lead to thin-film transistors within the pixel leaking, which may result in undesirable display artifacts such as bright dots being displayed in a dark image. In order to prevent leakage in the transistors, the transistors may be coupled to separate reference voltage supplies or separate control lines. Additionally, the transistors may be positioned to minimize leakage even at low ground voltage levels.
Abstract:
Electronic devices, storage medium containing instructions, and methods pertain to cancelling noise that results from application of voltages on gates of transistors in a display. One or more compensation or dummy drivers are used to apply a compensation voltage that is an inversion of voltages applied on the gates of the transistors.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic device display may have an array of display pixels that are controlled using a grid of data lines and gate lines. The display may include compact gate driver circuits that perform gate driver operations to drive corresponding gate lines. Each compact gate driver circuit may include a first driver stage and a second driver stage. The first driver stage may receive a start pulse signal and produce a control signal. The control signal may be stored by a capacitor to identify a control state of the gate driver circuit. The second driver stage may receive the control signal, a clock signal, and a corresponding inverted clock signal and drive the corresponding gate line based on the received signals. The second driver stage may include pass transistor circuitry that passes the clock signal to the corresponding gate line and may include short circuit protection circuitry.