Abstract:
Systems and electronic displays with improved contrast even under bright-light conditions are provided. Such an electronic display may include a self-emissive pixel (e.g., OLED or μ-LED) with a corresponding liquid crystal switchable retarder pixel. A liquid crystal layer of the switchable retarder pixel may be tuned to an “on” state or an “off” state. In the “on” state, the switchable retarder pixel may allow outside light that enters the pixel to reflect back out of the pixel. This may add to the amount of light that appears to be emitted from that pixel. In the “off” state, the switchable retarder pixel may block the outside light that enters the pixel from reflecting back out of the pixel. This may reduce the amount of light that appears to be emitted from that pixel. Selectively controlling the switchable retarder pixels may allow for increased contrast even under bright-light conditions.
Abstract:
Display structures for controlling viewing angle color shift are described. In various embodiments, polarization sensitive diffusers, independent controlled cathode thicknesses, filtermasks, touch detection layers, and color filters are described.
Abstract:
An organic light-emitting diode display may have an array of pixels with sets of pixels arranged in rows and columns. Each set of pixels includes a red pixel, a green pixel, a blue pixel, and a white pixel. The red pixels each have a white diode and a red color filter element to impart a red color to white light from that white diode. The green pixels each have a white diode and a green color filter element to impart a green color to white light from that white diode. The white pixels each have an unfiltered white diode. The blue pixels each have an unfiltered blue diode. The unfiltered white and blue diodes do not have color filters and emit white and blue light for the white and blue pixels, respectively. The white and blue diodes may be tandem diodes having two or more emissive layers.
Abstract:
Display structures for controlling viewing angle color shift are described. In various embodiments, polarization sensitive diffusers, independent controlled cathode thicknesses, filtermasks, and color filters are described.
Abstract:
Systems and electronic displays with improved contrast even under bright-light conditions are provided. Such an electronic display may include a self-emissive pixel (e.g., OLED or μ-LED) with a corresponding liquid crystal switchable retarder pixel. A liquid crystal layer of the switchable retarder pixel may be tuned to an “on” state or an “off” state. In the “on” state, the switchable retarder pixel may allow outside light that enters the pixel to reflect back out of the pixel. This may add to the amount of light that appears to be emitted from that pixel. In the “off” state, the switchable retarder pixel may block the outside light that enters the pixel from reflecting back out of the pixel. This may reduce the amount of light that appears to be emitted from that pixel. Selectively controlling the switchable retarder pixels may allow for increased contrast even under bright-light conditions.
Abstract:
A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer covers the array of pixels. Patterned metal on the pixel definition layer may assist the cathode layer in distributing a power supply voltage to the organic light-emitting diodes. The patterned metal may be overlapped by patterned black masking material on an encapsulation layer such as a color filter layer. The pixel definition layer may also be formed from metal that is coated with inorganic dielectric. The cathode may be shorted to a metal pixel definition layer through openings in the inorganic coating.
Abstract:
A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.
Abstract:
A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.
Abstract:
Display structures for controlling viewing angle color shift are described. In various embodiments, polarization sensitive diffusers, independent controlled cathode thicknesses, filtermasks, touch detection layers, and color filters are described.