Abstract:
A system for communicating between a first location and a second location comprises a jointed tubular string (4) having a first section (21) and a second section (22) connected at a connection joint (4), with the tubular string having a fluid (11) in an internal passage thereof. A first acoustic transducer (23) is mounted in the internal passage of the first section (21) proximate the connection joint (4), and a second acoustic transducer (25) is mounted in the internal passage of the second section (22) proximate the connection joint (4). A signal transmitted from the first location to the second location is transmitted across the connection joint as an acoustic signal in the fluid (11) from the first acoustic transducer (23) to the second acoustic transducer (25).
Abstract:
A drilling system for drilling subsea wellbores includes a tubing-conveyed drill bit (130) that passes through a subsea wellhead. Surface supplied drillng fluid flows through the tubing (121), discharges at the drill bit, returns to the wellhead through a wellbore annulus (122), and flows to the surface via a riser (160) extending from the wellhead. A flow restriction device (164) positioned in the riser restricts the flow of the returning fluid while an active fluid device controllably discharges fluid from a location below to just above the flow restriction device in the riser, thereby controlling bottomhole pressure and equivalent circulating density ("ECD"). Alternatively, the fluid is discharged into a separate return line (206) thereby providing dual gradient drilling while controlling bottomhole pressure and ECD. A controller (180) controls the energy and thus the speed of the pump in response to downhole measurement(s) to maintain the ECD at a predetermined value or within a predetermined range.
Abstract:
A system for communicating between a first location and a second location comprises a jointed tubular string (4) having a first section (21) and a second section (22) connected at a connection joint (4), with the tubular string having a fluid (11) in an internal passage thereof. A first acoustic transducer (23) is mounted in the internal passage of the first section (21) proximate the connection joint (4), and a second acoustic transducer (25) is mounted in the internal passage of the second section (22) proximate the connection joint (4). A signal transmitted from the first location to the second location is transmitted across the connection joint as an acoustic signal in the fluid (11) from the first acoustic transducer (23) to the second acoustic transducer (25).
Abstract:
A system and methods of transmitting information between a first location and a second location comprise transmitting a data signal and a known signal from one of the first location and the second location over a signal channel having a first noise component. A second noise component is measured in a noise channel adjacent the signal channel. The data signal, the known signal, and the first noise component are received at the other location. The first noise component is estimated based on the second noise component. The estimated noise component is combined with the received data signal and the received known signal to generate noise-cancelled received data and received known signals. The noise-cancelled received known signal is processed to obtain an estimate of the channel transfer function. The estimated channel transfer function is combined with the noise-cancelled received data signal to reconstruct the transmitted data signal.
Abstract:
Composite tubulars that have not been polymerized and are thus flexible enough to be coiled are delivered into a wellbore and expanded. The expansion occurs from an external catalist such as heat or releases the internal catalyst and allows the expanded tubular to become rigid. Optionally, healing agents can be imbedded in the tubular wall to be released to seal subsequently forming cracks.
Abstract:
A wellbore drilling system has an umbilical that carries a drill bit in a wellbore. Drilling fluid pumped into the umbilical discharges at the drill bit bottom and returns through an annulus between the umbilical and the wellbore carrying entrained drill cuttings. An active differential pressure device (APD device), such as a jet pump, turbine or centrifugal pump, in fluid communication with the returning fluid creates a differential pressure across the device, which alters the pressure below or downhole of the device. The APD device can be driven by a positive displacement motor, a turbine, an electric motor, or a hydraulic motor. A controller controls the operation of the APD device in response to programmed instructions and/or one or more parameters of interest detected by one or more sensors. A preferred system is a closed loop system that maintains the wellbore at under-balance condition, at-balance condition or over-balance condition.