Abstract:
A drilling system for drilling subsea wellbores includes a tubing-conveyed drill bit (130) that passes through a subsea wellhead. Surface supplied drillng fluid flows through the tubing (121), discharges at the drill bit, returns to the wellhead through a wellbore annulus (122), and flows to the surface via a riser extending from the wellhead. A flow restriction device (164) positioned in the riser restricts the flow of the returning fluid while an active fluid device controllably discharges fluid from a location below to just above the flow restriction device in the riser, thereby controlling bottomhole pressure and equivalent circulating density ("ECD"). Alternatively, the fluid is discharged into a separate return line (206) thereby providing dual gradient drilling while controlling bottomhole pressure and ECD. A controller (180) controls the energy and thus the speed of the pump in response to downhole measurement(s) to maintain the ECD at a predetermined value or within a predetermined range.
Abstract:
An apparatus and method for reducing temperature along a bottomhole assembly during a drilling operation is provided. In one aspect the bottomhole temperature may be reduced by drilling a borehole using a drill string having a bottomhole assembly at an end thereof, circulating a fluid through the drill string and an annulus between the drill string and the borehole, diverting a selected portion of the fluid from the drill string into the annulus at a selected location above the drill bit to reduce pressure drop across at least a portion of the bottomhole assembly to reduce temperature of the bottomhole assembly during the drilling operation.
Abstract:
Composite tubulars that have not been polymerized and are thus flexible enough to be coiled are delivered into a wellbore and expanded. The expansion occurs from an external catalist such as heat or releases the internal catalyst and allows the expanded tubular to become rigid. Optionally, healing agents can be imbedded in the tubular wall to be released to seal subsequently forming cracks.
Abstract:
An apparatus and methods for pumping a fluid mixture from a wellbore location to a selected location is disclosed. The apparatus, in one embodiment, includes a container configured to be placed in the wellbore, wherein the container is configured to mix therein a fluid received from a first source and an additive received from a second source, and a pump unit coupled to the container and configured to pump the mixed fluid from the container to the selected location. The method in one embodiment includes: supplying a fluid from a first source to a container placed in a wellbore; supplying an additive from a second source to the container; allowing the fluid and the additive to mix in the container to form a mixed fluid; and pumping the mixed fluid from the container to the selected location.
Abstract:
A drilling system for drilling subsea wellbores includes a tubing-conveyed drill bit that passes through a subsea wellhead. Surface supplied drillng fluid flows through the tubing, discharges at the drill bit, returns to the wellhead through a wellbore annulus, and flows to the surface via a riser extending from the wellhead. A flow restriction device positioned in the riser restricts the flow of the returning fluid while an active fluid device controllably discharges fluid from a location below to just above the flow restriction device in the riser, thereby controlling bottomhole pressure and equivalent circulating density ("ECD"). Alternatively, the fluid is discharged into a separate return line thereby providing dual gradient drilling while controlling bottomhole pressure and ECD. A controller controls the energy and thus the speed of the pump in response to downhole measurement(s) to maintain the ECD at a predetermined value or within a predetermined range.
Abstract:
A method for reducing temperature of a bottomhole assembly during a drilling operation is disclosed, that, in one aspect, may include: drilling a borehole using a drillstring including a bottomhole assembly by circulating a fluid through the drillstring and an annulus between the drillstring and the borehole, pausing drilling, continuing circulating the fluid through the dill string and the annulus. The method further includes diverting a portion of the fluid from the drillstring into the annulus at a selected location above the drill bit to reduce temperature of the bottomhole assembly.
Abstract:
A seal (10) comprising a tube (12), itself at least partially comprising a shape memory material around which is disposed a swellable material in the form of an element (14). Such a swellable material increases the chances that a seal or actuation force will be effected by ensuring that the material will react to at least one of the fluids in the wellbore at any given time. The shape memory material is selected such that it possesses a transition temperature appropriate to the environment in which the seal (10) is to be used.
Abstract:
A system and methods of transmitting information between a first location and a second location comprise transmitting a data signal and a known signal from one of the first location and the second location over a signal channel having a first noise component. A second noise component is measured in a noise channel adjacent the signal channel. The data signal, the known signal, and the first noise component are received at the other location. The first noise component is estimated based on the second noise component. The estimated noise component is combined with the received data signal and the received known signal to generate noise-cancelled received data and received known signals. The noise-cancelled received known signal is processed to obtain an estimate of the channel transfer function. The estimated channel transfer function is combined with the noise-cancelled received data signal to reconstruct the transmitted data signal.
Abstract:
A system for reverse circulation in a wellbore include equipment for supplying drilling fluid into the wellbore bit via at least an annulus of the wellbore and returning the drilling fluid to a surface location via at least a bore of a wellbore tubular. The system also includes devices for controlling the annulus pressure associated with this reverse circulation. In one embodiment, an active pressure differential device increases the pressure wellbore annulus to at least partially offset a circulating pressure loss. In other embodiments, the system includes devices for decreasing the pressure in the annulus of the wellbore. For offshore application, annulus pressure is decreased to accommodate the pore and fracture pressures of a subsea formation. In still other embodiments, annulus pressure is decreased to cause an underbalanced condition in the well.