Abstract:
In a process for purifying carboxylic esters such as ethyl formate, a carboxylic ester to be purified is distilled in the presence of an extractant, preferably by (a) allowing vapour of the carboxylic ester to be purified to ascend in a distillation column; (b) conveying the extractant in countercurrent to the vapour in an extractive distillation zone; (c) taking off pure carboxylic ester above the extractive distillation zone. The extractant is selected, for example, from among diols, polyols, open-chain or cyclic amides.
Abstract:
The invention relates to a reactor (1) in the form of a cylinder with a vertical longitudinal axis, for performing an autothermal gas-phase dehydrogenation of a hydrocarbon-containing gas stream (2) with an oxygen-containing gas stream (3), obtaining a reaction gas mixture, on a heterogeneous catalyst, which is designed as monolith (4), wherein one or more catalytically active zones (5) are arranged in the interior of the reactor (1), each zone comprising a packing of monoliths (4) stacked one next to another and/or one on top of another and wherein a mixing zone (6) with fixed installations is provided upstream of each catalytically active zone (5). The reactor has: - one or more feeder lines (7) at the lower end thereof for the hydrocarbon-containing gas stream (2) to be dehydrogenated; - one or more feeder lines (9) that can be regulated independently of one another for the oxygen-containing gas stream (3) flowing into each of the mixing zones (6), each feeder line (9) feeding one or more distributors (10); - and one or more discharge lines (11) at the upper end of the reactor (1) for the reaction gas mixture from the autothermal gas-phase dehydrogenation, wherein the interior wall of the reactor (1) is furnished with a continuous insulation layer (13, 14, 15) and wherein the accessibility of one or each of the plurality of catalytically active zones (5) from outside the reactor is guaranteed via - one or more manholes (12), or wherein one or each of the plurality of catalytically active zones (5), each comprising a respective packing of monoliths stacked one next to another and/or one on top of an other including - the mixing zone (6) with fixed installations provided upstream of each catalytically active zone (5) - the one or more feeder lines (9) controllable independently of one another - and the one or more distributors (10) that are each fed via a respective feeder line (9), are constructed as a structural element (24) that can be individually installed or uninstalled.
Abstract:
In a process for preparing carboxylic esters by transesterification, a first feed stream comprising a first carboxylic ester, e.g. methyl formate, is introduced at the side into a reaction column at a first inlet located between the top and the bottom of the reaction column and a second feed stream comprising a first alcohol, e.g. ethanol, is introduced at the side into the reaction column at a second inlet located above the first inlet and the feed streams are reacted in a reaction zone of the reaction column to form a second carboxylic ester and a second alcohol. The first alcohol has a higher molecular weight than the second alcohol. A product fraction comprising the second carboxylic ester and unreacted first carboxylic ester is taken off at an offtake located above the second inlet. A bottom fraction comprising the second alcohol and unreacted first alcohol is taken off at the bottom of the reaction column. The product fraction is separated by distillation at a pressure which is different from the pressure in the reaction column into second carboxylic ester and a fraction containing unreacted first carboxylic ester and the fraction containing unreacted first carboxylic ester is at least partly recirculated to the reaction zone.
Abstract:
Process for decreasing fumaric acid deposits during the production of maleic anhydride by heterogeneous catalytic oxidation of a hydrocarbon with molecular oxygen in which the maleic anhydride is absorbed from the crude product mixture in an absorbent in an absorption column and desorbed again in a desorption column, wherein the total amount or a subquantity of the maleic anhydride-depleted absorbent, for targeted precipitation of the fumaric acid, is cooled and/or concentrated by vaporizing a part of the absorbent until the difference between the concentration of fumaric acid in the recycle stream at the outlet of the desorption column, under the conditions prevailing there and the equilibrium concentration of fumaric acid according to the solubility curve after the cooling and/or evaporation of a part of the absorbent is greater than or equal to 250 ppm by weight and the fumaric acid which is precipitated out as solid is removed in whole or in part from the absorbent recycle and the fumaric acid-depleted absorbent is recycled in whole or in part to the absorption column.