Abstract:
Described herein is a multilayer film including at least one layer including a polymer composition obtainable by free-radical polymerization of a monomer composition including at least one monomer A) selected from α,β-ethylenically unsaturated mono- and dicarboxylic acids, salts of α,β-ethylenically unsaturated mono- and dicarboxylic acids, anhydrides of α,β-ethylenically unsaturated mono- and dicarboxylic acids and mixtures thereof, where the free-radical polymerization is effected in the presence of at least one polyether component. Also described herein is a process for producing the multilayer film, methods of using the multilayer film and a sheath or coating for a washing composition, cleaning composition or dishwashing composition portion including the multilayer film, and to washing compositions, cleaning compositions or dishwashing compositions including the multilayer film.
Abstract:
Provided herein is a method for producing polyaspartic acid under reflux cooling. Further provided herein are compositions including polyaspartic acid obtainable through the method. Also provided herein is a use of polyaspartic acids obtainable through the method in dishwashing agents, detergents, and cleaning agents.
Abstract:
Process for cleaning dishware soiled with fatty residue, characterized in that said process is carried out at a temperature in the range of from 45 to 65° C. and using at least one formulation, comprising (A) in the range of from 1 to 50% by weight of at least one complexing agent, selected from the alkali metal salts of citric acid, aminocarboxylic acids and from sodium tripolyphosphate, (B) in the range of from 2 to 8% by weight of at least one non-ionic surfactant of general formula (I) R1—CH(OH)—CH2—O-(AO)x—R2 (I) (C) in the range of from 0.25 to less than 4% by weight of a copolymer, being obtained from copolymerizing the following comonomers (a) at least one comonomer selected from ethylenically unsaturated C3-C4-carboxylic acids and ethylenically unsaturated C4-C8-dicarboxylic acids or their respective anhydrides, (b) at least one comonomer selected from isobutene, diisobutene, C2-C28-a-olefins, and C12-C24-alkyl esters of (meth)acrylic acid, (c) optionally, at least one further comonomer selected from non-ionic comonomers, the integers being defined as follows: R1 being selected from C4-C30-alkyl, straight-chain or branched, and from C4-C30-alkenyl, straight-chain or branched, with at least one C—C double bond, R2 being selected from C1-C30-alkyl, straight-chain or branched, and from C2-C30-alkenyl, straight-chain or branched, with at least one C—C double bond, x being selected from one to 100, AO being identical or different alkylene oxides, selected from CH2—CH2—O, (CH2)3—O, (CH2)4—O, CH2CH(CH3)—O, CH(CH3)—CH2—O— and CH2CH(n-C3H7)—O. R1—CH(OH)—CH2—O-(AO)x—R2 (I)
Abstract:
A highly alkaline detergent is described which includes the use of a carboxylic acid terpolymer in combination with an alkali metal hydroxide. The detergent maintains cleaning functions and also prevents hard water scaling at application temperatures, for example at temperatures of between about 145-180 degrees Fahrenheit and, for example, at a pH of 9.5 to about 13.
Abstract:
Stability enhancement agents for use in a solidification matrices and solid detergent compositions are described. Stability enhancement is provided by a hydratable salt, water and a carboxylic acid terpolymer forming a dimensionally stable solid compositions. Preferred carboxylic acid terpolymers include from about 40 to 90% by weight of a carboxylic acid monomer, anhydride or salt thereof, from about 4 to 40% by weight of a monomer comprising sulfo groups, and from about 4 to 40% by weight of a nonionic monomer set forth in formula (I). The stability enhancement composition for use in solid detergent compositions are preferably biodegradable and may be substantially free of phosphate and/or NTA-free and provide beneficial hard water scale control.
Abstract:
Described herein is a dishwashing detergent formulation, including (a) 1-15% by weight of the total composition of (a1) at least one of polyaspartic acid or modified polyaspartic acid or salts thereof, and (a2) at least one graft copolymer composed of wherein the weight ratio of (a1):(a2) is from 20:1 to 1:12; (b) 0-60% by weight of complexing agent; (c) 0.1-80% by weight of builders and/or cobuilders; (d) 0.1-20% by weight of nonionic surfactants; (e) 0-30% by weight of bleaches and bleach activators; (f) 0-10% by weight of enzymes and enzyme stabilizers; and (g) 0-50% by weight of additives.
Abstract:
A highly alkaline detergent is described which includes the use of a carboxylic acid terpolymer in combination with an alkali metal hydroxide. The detergent maintains cleaning functions and also prevents hard water scaling at application temperatures, for example at temperatures of between about 145-180 degrees Fahrenheit and, for example, at a pH of 9.5 to about 13.
Abstract:
Described herein is a process for preparing solid acrylic acid polymers including: (a) preparing an aqueous acrylic acid polymer solution having a solids content of 30% to 70% by weight by free-radical polymerization, (b) neutralizing the aqueous acrylic acid polymer solution at least partly by adding a base, which results in release of a heat of neutralization, and concentrating the aqueous acrylic acid polymer solution by exploiting the heat of neutralization to give a highly concentrated acrylic acid polymer solution having a solids content of 60% to 80% by weight, (c) shaping and drying the highly concentrated acrylic acid polymer solution.
Abstract:
Provided herein is a method for producing polyaspartic acid under reflux cooling. Further provided herein are compositions including polyaspartic acid obtainable through the method. Also provided herein is a use of polyaspartic acids obtainable through the method in dishwashing agents, detergents, and cleaning agents.
Abstract:
Stability enhancement agents for use in a solidification matrices and solid detergent compositions are described. Stability enhancement is provided by a hydratable salt, water and a carboxylic acid terpolymer forming a dimensionally stable solid compositions. Preferred carboxylic acid terpolymers include from about 40 to 90% by weight of a carboxylic acid monomer, anhydride or salt thereof, from about 4 to 40% by weight of a monomer comprising sulfo groups, and from about 4 to 40% by weight of a nonionic monomer set forth in formula (I). The stability enhancement composition for use in solid detergent compositions are preferably biodegradable and may be substantially free of phosphate and/or NTA-free and provide beneficial hard water scale control.