Abstract:
The invention relates to an apparatus (1) for producing pseudoionone and hydroxy pseudoionone. It suggests an apparatus (1) comprising first and second substantially vertically oriented reactor chambers oriented such that components flow through the first and second reactor chambers in different directions, wherein the first reactor chamber (13) is configured to receive a first component feed (C1) containing a first aqueous mixture through an inlet (15), and to produce a second aqueous mixture, and wherein the apparatus (1) comprises a mixing device (17) positioned downstream of the first component feed inlet (15) and configured to add a second component feed (C2) to the first component feed (C1) when the second aqueous mixture has formed, and the second reactor chamber (23) is configured to receive the first and second component feeds unified in the mixing device (17) from the first reactor chamber (13) and to produce a third aqueous mixture from the first and second aqueous mixtures. The invention further suggests a method and a use for producing pseudoionone and hydroxy pseudoionone.
Abstract:
The invention relates to a process for producing 4,4′-dichlorodiphenyl sulfoxide comprising: (I) reacting thionyl chloride, chlorobenzene and aluminum chloride in a molar ratio of thionyl chloride:chlorobenzene:aluminum chloride of 1:(6 to 9):(1 to 1.5) at a temperature in the range from 0 to below 20° C., forming an intermediate reaction product and hydrogen chloride; (II) mixing aqueous hydrochloric acid and the intermediate reaction product at a temperature in the range from 70 to 110° C. to obtain an organic phase comprising 4,4′-dichlorodiphenyl sulfoxide and an aqueous phase; (III) cooling the organic phase comprising the 4,4′-dichlorodiphenyl sulfoxide to a temperature below the saturation point of 4,4′-dichlorodiphenyl sulfoxide to obtain a suspension comprising crystallized 4,4′-dichlorodiphenyl sulfoxide; (IV) solid-liquid-separation of the suspension to obtain a residual moisture containing solid 4,4′-dichlorodiphenyl sulfoxide comprising crystallized 4,4′-dichlorodiphenyl sulfoxide and mother liquor.
Abstract:
A reactor for performing a gas/liquid biphasic high-pressure reaction with a foaming medium, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone and a zone of limited backmixing, wherein the backmixed zone and the zone of limited backmixing are consecutively traversable by the reaction mixture, wherein the backmixed zone comprises means for introducing gas and liquid and a gas outlet and also comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the gas, and the zone of limited backmixing comprises a reaction product outlet, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing and a riser tube whose lower end is arranged within the backmixed zone and whose upper end opens into the zone of limited backmixing so that liquid from the backmixed zone can ascend into the zone of limited backmixing via the riser tube, wherein flow into the zone of limited backmixing enters from below. The reactor is configured such that the high-pressure reaction space is optimally utilized and contamination of workup steps or subsequent reactions arranged downstream of the high-pressure reaction with foam is substantially avoided. The invention further relates to a process for performing a continuous gas/liquid biphasic high-pressure reaction in the reactor.
Abstract:
A reactor for performing a reaction between two immiscible fluids of different density, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone, a zone of limited backmixing preferably arranged below the backmixed zone and a plug-flow zone which are at least consecutively traversable by one of the fluids, wherein the backmixed zone comprises at least one inlet and the plug-flow zone comprises an outlet and the backmixed zone comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the fluid of lower density, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor, which delimits the zone of limited backmixing from the plug-flow zone and which comprises a first passage to the backmixed zone and a second passage to the plug-flow zone, a second internal element which delimits the backmixed zone from the plug-flow zone such that there is no direct fluid connection between the backmixed zone and the plug-flow zone, and backmixing-preventing third internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing. The reactor allows an optimal residence time distribution in the reaction of the two immiscible fluids of different density. The invention further relates to a process for performing a continuous reaction in the reactor.
Abstract:
The present invention relates to an apparatus of the loop Venturi reactor type for the continuous reaction of liquids with gases, in particular for hydrogenations, oxidations or acetylations, e.g. for the preparation of toluenediamine by hydrogenation of dinitrotoluene, and a process for the continuous reaction of liquid reactants with gaseous reactants in the apparatus. In the apparatus of the invention, the diversion of an internal circulatory flow in the reactor is effected by means of a diversion pan which is arranged underneath a heat exchanger.
Abstract:
The present invention relates to a process for preparing deodorized 1,2-propanediol, to the use of the purified propanediol and to an apparatus for performing the process.
Abstract:
A process for preparing ethylamines and monoisopropylamine (MIPA), in which bioethanol is reacted with ammonia in the presence of hydrogen and of a heterogeneous catalyst to give ethylamines, said bioethanol having a content of sulfur and/or sulfur compounds of ≧0.1 ppm by weight (calculated S), and then isopropanol is reacted with ammonia in the presence of the same catalyst and in the presence of hydrogen to give MIPA.