Abstract:
The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral α,β-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral α,β-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino, wherein R3 and R4 are as defined in the claims and the description.
Abstract:
Process for preparing primary amines which have at least one functional group of the formula (—CH2—NH2) and at least one further primary amino group by alcohol amination of starting materials having at least one functional group of the formula (—CH2—OH) and at least one further functional group (—X), where (—X) is selected from among hydroxyl groups and primary amino groups, by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
Abstract:
The present invention relates to the use of a transition metal catalyst TMC1, which comprises a transition metal M selected from metals of groups 7, 8, 9 and 10 of the periodic table of elements according to IUPAC and a tetradentate ligand of formula I wherein R1 are identical or different and are each an organic radical having from 1 to 40 carbon atoms, and R2 are identical or different and are each an organic radical having from 1 to 40 carbon atoms, as catalyst in processes for formation of compounds comprising at least one carboxylic acid ester functional group —O—C(═O)— starting from at least one primary alcohol and/or hydrogenation of compounds comprising at least one carboxylic acid ester functional group —O—C(═O)—. The present invention further relates to a process for hydrogenation of a compound comprising at least one carboxylic acid ester functional group —O—C(═O)—, to a process for the formation of a compound comprising at least one carboxylic acid ester functional group —O—C(═O)— by dehydrogenase coupling of at least one primary alcohol with a second alcoholic OH-group, to a transition metal complex comprising the tetradentate ligand of formula I and to a process for preparing said transition metal complex.
Abstract:
A reactor for performing a gas/liquid biphasic high-pressure reaction with a foaming medium, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone and a zone of limited backmixing, wherein the backmixed zone and the zone of limited backmixing are consecutively traversable by the reaction mixture, wherein the backmixed zone comprises means for introducing gas and liquid and a gas outlet and also comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the gas, and the zone of limited backmixing comprises a reaction product outlet, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing and a riser tube whose lower end is arranged within the backmixed zone and whose upper end opens into the zone of limited backmixing so that liquid from the backmixed zone can ascend into the zone of limited backmixing via the riser tube, wherein flow into the zone of limited backmixing enters from below. The reactor is configured such that the high-pressure reaction space is optimally utilized and contamination of workup steps or subsequent reactions arranged downstream of the high-pressure reaction with foam is substantially avoided. The invention further relates to a process for performing a continuous gas/liquid biphasic high-pressure reaction in the reactor.
Abstract:
A reactor for performing a reaction between two immiscible fluids of different density, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone, a zone of limited backmixing preferably arranged below the backmixed zone and a plug-flow zone which are at least consecutively traversable by one of the fluids, wherein the backmixed zone comprises at least one inlet and the plug-flow zone comprises an outlet and the backmixed zone comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the fluid of lower density, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor, which delimits the zone of limited backmixing from the plug-flow zone and which comprises a first passage to the backmixed zone and a second passage to the plug-flow zone, a second internal element which delimits the backmixed zone from the plug-flow zone such that there is no direct fluid connection between the backmixed zone and the plug-flow zone, and backmixing-preventing third internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing. The reactor allows an optimal residence time distribution in the reaction of the two immiscible fluids of different density. The invention further relates to a process for performing a continuous reaction in the reactor.
Abstract:
The invention relates to a process for preparing primary amines by alcohol amination of alcohols with ammonia with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises ruthenium and at least one at least bidental donor ligand, but no anionic ligands.
Abstract:
The invention relates to a process for preparing amines (A) by alcohol amination of alcohols (Al) by means of an aminating agent (Am) with elimination of water, wherein the alcohol amination is carried out in the presence of a complex catalyst comprising iridium and an amino acid.
Abstract:
A process for performing a continuous gas/liquid biphasic high-pressure reaction, wherein a gas and a liquid are introduced into a backmixed zone of a reactor and in the backmixed zone the gas is dispersed in the liquid by stirring, injection of gas and/or a liquid jet, a reaction mixture consecutively traverses the backmixed zone and a zone of limited backmixing, and a liquid reaction product is withdrawn at a reaction product outlet of the zone of limited backmixing, wherein the reactor comprises: an interior formed by a cylindrical vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by means of internals into the backmixed zone, the zone of limited backmixing and a cavity, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing and a third internal element which in the interior extends in the longitudinal direction of the reactor and is open at the bottom, wherein the third internal element forms the cavity in which gas bubbles collect and do not escape upwards, thus preventing the volume of the cavity from being occupied by liquid and reducing the reaction volume. The reaction volume of the reactor used in the process can be reversibly reduced in simple fashion. The invention further relates to a process for adapting the reaction volume of a reactor suitable for performing a gas/liquid biphasic high-pressure reaction having an outlet for a liquid reaction product in which an internal element is arranged so as to form a cavity open at the bottom in which gas bubbles collect and do not escape upwards, thus preventing the volume of the cavity from being occupied by liquid and reducing the reaction volume.
Abstract:
The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral α,β-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral α,β-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino, wherein R3 and R4 are as defined in the claims and the description.