Abstract:
A method for operating an apparatus with at least one rotating shaft, the at least one rotating shaft comprising functional elements which act on material to be processed in the apparatus, the apparatus comprising a filling orifice and an outlet orifice with an adjustable lower edge, and material being conveyed continuously through the apparatus from the filling orifice to the outlet orifice, said method comprising the following steps: a) measuring load data for the at least one rotating shaft in order to determine shaft load, b) lowering the lower edge of the outlet orifice and/or reducing the quantity of material supplied if the shaft load exceeds a specified maximum load, or displacing the lower edge of the outlet orifice upwards and/or increasing the quantity of material supplied if the shaft load is less than a specified shaft load.
Abstract:
The invention relates to a process for operating a mixing kneader, comprising one or more shafts on whose surfaces are disposed kneading bars and which are surrounded by a casing, comprising the following steps: (a) supplying reactants at an addition site in the mixing kneader, (b) converting the reactants in an exothermic reaction, the reaction at first forming a coherent kneadable intermediate, (c) tearing and dividing the coherent kneadable intermediate to form a product, the exothermic reaction optionally continuing during the tearing and division, (d) withdrawing the product at a withdrawal site in the mixing kneader, wherein at least one of the shafts and/or the casing is heated to a temperature above 20° C. during the operation of the mixing kneader.
Abstract:
The invention relates to an injector (21) for the addition of a granular solid to a mixing chamber, comprising a central pipe (3) for the addition of the granular solid, an addition apparatus (5) which surrounds the central pipe (3) and is intended for the addition of a propellant gas, wherein the central pipe (3) and the addition apparatus (5) which surrounds the central pipe (3) form an annular gap (9) at the end of the central pipe (3), and also a mixing section (11) with a constant cross section, which adjoins the annular gap (9), and a pipe portion (31) having an outlet opening subsequent to the mixing section (11). The pipe portion (31) having an outlet opening has a change in cross section from a circular inlet cross section to a non-circular outlet cross section of the outlet opening and is rotatable about a central axis.
Abstract:
The invention relates to a heat exchanger for heating gas to a temperature in the range from 150 to 400° C., wherein the gas is heated by indirect heat transfer and all the surfaces of the walls of the heat exchanger which come into contact with the gas have been hot dip galvanized and the surfaces which come into contact with the gas, after the hot dip galvanization, have been heat treated at a temperature in the range from 400 to 750° C. The invention further relates to the use of the heat exchanger.
Abstract:
A method for the classification of superabsorber particles is disclosed, in which the superabsorber particles are put onto a top screen deck of a screening machine having at least two screen decks with a different hole size, the superabsorber particles which are smaller than the holes of the respective screen deck respectively falling through the holes and the superabsorber particles remaining on the screen deck being removed via an extraction point. Balls are positioned on each perforated plate, which balls are propelled upward by the movement of the perforated plate and strike from below the screen deck respectively lying above, wherein the balls have a stiffness in the range from 40 to 100 N/mm and a damping in the range from 1 to 4%. A machine for carrying out the method also is disclosed.
Abstract:
A process for producing superabsorbents, comprising the steps of i) classifying the superabsorbent particles by means of one or more sieves and ii) removing metallic impurities by means of one or more magnetic separators, wherein classification is accomplished using sieves made of a wire mesh, the wires of the wire mesh consist of a steel composed of at least 70% by weight of iron, at least 10% by weight of chromium and less than 2.5% by weight of nickel, and the throughput of superabsorbent particles in the magnetic separator is in the range from 2.0 to 6.5 g/s per cm2 of free cross-sectional area.
Abstract:
The invention relates to a heat exchanger for heating gas to a temperature in the range from 150 to 400° C., wherein the gas is heated by indirect heat transfer and all the surfaces of the walls of the heat exchanger which come into contact with the gas have been hot dip galvanized and the surfaces which come into contact with the gas, after the hot dip galvanization, have been heat treated at a temperature in the range from 400 to 750° C.The invention further relates to the use of the heat exchanger.
Abstract:
A method is described for operating machines (10) having moving parts and arranged jointly on a support (32), said parts being moved periodically with substantially the same frequency, and wherein the phase of an oscillation of one machine (10) in relation to the phase of an oscillation of a further machine (10) is controlled by shifting the phases with respect to one another such that the amplitude of an oscillation of a structural part, for example of the support (32), remains below a predefined maximum value.
Abstract:
A method for connecting functional elements (14) to a shaft (10, having the following steps: (a) forming elevations (12) for receiving the functional elements (14), said elevations (12) being machined out of the shaft (10) by removing material, and (b) welding the functional elements (14) to the elevations (12) on the shaft (10).
Abstract:
The invention relates to a process for producing water-absorbing polymer particles, comprising polymerization, drying the resulting polymer gel on a through circulation belt dryer, crushing the dried polymer gel, pre-grinding, separating of incompletely dried particles with a perforated plate, grinding and classifying the resulting polymer particles.