Abstract:
A process for preparing an aromatic polyamine mixture including 4,4′-methylenedi(phenylamine) and higher homologues of MDA is provided. The process includes steps of (i) reaction of aniline with formaldehyde by means of an acid catalyst to form a crude product mixture (I), (ii) neutralization of the crude product mixture (I) and removal of the salts formed; (iii) isolation of aniline; (iv) distillation of the resulting crude product mixture so as to separate off (iv-1) a mixture (II) of MDA isomers (II-1) containing from 8 to 20% by weight of 4,4′-methylenedi(phenylamine) and not more than 0.3% by weight of secondary components (II-2) and (iv-2) a low boiler mixture of at least 55% by weight of secondary components (II-2) and MDA isomers (II-1); and (v) recirculation of the mixture (II).
Abstract:
A process for preparing a composite material comprising an electride compound and an additive, said process comprising (i) providing a composition comprising the additive and a precursor compound of the electride compound, wherein the precursor compound comprises an oxidic compound of the garnet group, and wherein the additive has a boiling temperature which is higher than the melting temperature of the precursor compound; (ii) heating the composition provided in (i) under plasma forming conditions in a gas atmosphere to a temperature above the Hüttig temperature of the precursor compound and below the boiling temperature of the additive, obtaining the composite material.
Abstract:
A process for preparing an electride compound, comprising (i) providing a precursor compound comprising an oxidic compound of the garnet group; (ii) heating the precursor provided in (i) under plasma forming conditions in a gas atmosphere to a temperature of the precursor above the Hüttig temperature of the precursor, obtaining the electride compound.
Abstract:
The invention relates to a process for preparing isocyanates by reacting primary amines with phosgene in a solvent, where the solvent comprises a dialkyl carbonate.
Abstract:
The present invention relates to a process for preparing at least one polyisocyanate R(—NCO)x, the process comprising preparing a mixture R1 comprising at least one polyamine R(—NH2)x, with x=2 or more, in a first reaction zone Z1; passing at least a portion P1 of the mixture R1, P1 comprising R(—NH2)x, into a storing device D1 and storing P1 in D1 for a period of time Δt1; removing, after storing for Δt1, at least a portion P2 of P1, P2 comprising R(—NH2)x, from D1; passing P2 into a reaction zone Z2; and reacting, in Z2, R(—NH2)x comprised in P2 with phosgene, obtaining a mixture R2 comprising the at least one polyisocyanate R(—NCO)x; wherein Δt1 is in the range of from 1 minute to 7 d.
Abstract:
The invention relates to a process for producing phosgene by conversion of chlorine and CO over an activated carbon catalyst, wherein the activated carbon catalyst is dried by reducing the water content, where the drying comprises the following steps:
a) contacting the catalyst with an inert gas stream b) determining the residual moisture content of the catalyst by determining the moisture content in the offgas stream c) ending the drying process after attainment of the desired moisture content in the offgas stream by switching from the inert gas to the reaction gases and optionally d) heating up the catalyst bed and/or the inert gas during the drying process.
Abstract:
A process of separating phosgene and hydrogen chloride, comprises: conveying a mixed stream containing hydrogen chloride and phosgene into a distillation column; withdrawing from the distillation column a bottom stream containing phosgene; withdrawing a top stream containing hydrogen chloride; compressing at least a portion of the top stream and at least partially condensing the compressed top stream to form a liquid stream, decompressing at least a portion of the liquid stream to form a cooled liquid stream and a cooled gas stream; and recycling the cooled liquid stream to the top of the distillation column as a reflux; the process additionally comprising temporarily introducing an absorbing solvent into the distillation column, in particular during starting-up and/or shutting-down of the process. The process allows for safe operation even when hydrogen chloride production only gradually begins or decreases, without the necessity of storing hydrogen chloride.
Abstract:
The invention relates to a process for preparation of chlorine from hydrogen chloride comprising circulating a liquid melt comprising copper ions Cun+ with n being a number in the range from 1 to 2, alkali cations and chloride ions Cl in a reactor system comprising three bubble lift reactors I, II and III, each comprising a reaction zone i, ii and iii respectively, wherein: ⋅(a) in the reaction zone i of the first bubble lift reactor I, a liquid melt comprising copper ions Cun+, alkali cations and chloride ions Cl— is contacted with oxygen at a temperature in the range from 395 to 405° C. so that the molar ratio Cun+:Cu+ in the liquid melt increases, obtaining a liquid melt having an increased molar ratio Cun+:Cu+ ⋅(b) the liquid melt obtained in (a) is circulated to the reaction zone ii in the second bubble lift reactor II, where the liquid melt is contacted with hydrogen chloride at a temperature in the range from 395 to 405° C. so that water is formed, obtaining a liquid melt being enriched in chloride anions (CI-) compared to the liquid melt obtained according to (a); ⋅(c) circulating the liquid melt obtained in (b) to the reaction zone iii in the third bubble lift reactor III, which is operated at a temperature in the range from 420 to 430° C. so that chlorine (Cl2) is formed, wherein Cl2 is removed from the reaction zone iii and the third bubble lift reactor III respectively in gaseous form, leaving a liquid melt depleted of Cl-compared to the liquid melt obtained according to (b). The invention further relates to a reactor system comprising three bubble lift reactors I, II and III.
Abstract:
The present invention relates to a continuous process for preparing chlorine and a production unit for carrying out said process. The present invention further relates to a use of said production unit for the continuous production of chlorine.
Abstract:
The invention relates to a process for preparation of chlorine from hydrogen chloride comprising circulating a liquid melt comprising copper ions Cun+ with n being a number in the range from 1 to 2, alkali cations and chloride ions Cl in a reactor system comprising three bubble lift reactors I, II and III, each comprising a reaction zone i, ii and iii respectively, wherein: ⋅(a) in the reaction zone i of the first bubble lift reactor I, a liquid melt comprising copper ions Cun+, alkali cations and chloride ions Cl— is contacted with oxygen at a temperature in the range from 395 to 405° C. so that the molar ratio Cun+:Cu+ in the liquid melt increases, obtaining a liquid melt having an increased molar ratio Cun+:Cu+ ⋅(b) the liquid melt obtained in (a) is circulated to the reaction zone ii in the second bubble lift reactor II, where the liquid melt is contacted with hydrogen chloride at a temperature in the range from 395 to 405° C. so that water is formed, obtaining a liquid melt being enriched in chloride anions (CI-) compared to the liquid melt obtained according to (a); ⋅(c) circulating the liquid melt obtained in (b) to the reaction zone iii in the third bubble lift reactor III, which is operated at a temperature in the range from 420 to 430° C. so that chlorine (Cl2) is formed, wherein Cl2 is removed from the reaction zone iii and the third bubble lift reactor III respectively in gaseous form, leaving a liquid melt depleted of Cl-compared to the liquid melt obtained according to (b). The invention further relates to a reactor system comprising three bubble lift reactors I, II and III.