Abstract:
A body weight support system includes a trolley, a powered conductor operative coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
A system includes a first trolley and a second trolley movably suspended from a support track. The first trolley includes a patient attachment mechanism configured to support a first patient. The first trolley is configured to move relative to the support track. The second trolley includes a patient attachment mechanism configured to support a second patient. The second trolley is configured to move relative to the support track such that the movement of the second trolley is independent of the movement of the first trolley. A collision management assembly is configured to be coupled to one of the first trolley and the second trolley. The collision management assembly includes a bumper that is configured to prevent the first trolley from directly contacting the second trolley.
Abstract:
In some embodiments, a method includes inserting at least a distal end portion of an insertion tool within a body. The distal end portion of the insertion tool is coupled to an electronic implant having a stimulation portion, a terminal portion and a substantially flexible conductor disposed between the stimulation portion and the terminal portion. The distal end portion of the insertion tool is moved within the body such that the stimulation portion of the electronic implant is disposed adjacent a target location and the terminal portion of the electronic implant is disposed beneath a skin of the body.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
A body weight support system includes a support track, a trolley, and a power rail. The support track has a first portion and a second portion. The trolley has a support assembly and a drive assembly. The support assembly is configured to support at least a portion of a body weight of a user. The drive assembly is configured to movably suspend the trolley from the first portion of the support track when the user moves along a first surface and is configured to movably suspend the trolley from the second portion of the support track when the user moves along a second surface separate from the first surface. The power rail is coupled to the support track and is configured to be in electrical contact with a portion of the trolley as the trolley moves along the first portion and the second portion of the support track.
Abstract:
A body weight support system includes a trolley, a powered conductor operatively coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
A system includes a first trolley and a second trolley movably suspended from a support track. The first trolley includes a patient attachment mechanism configured to support a first patient. The first trolley is configured to move relative to the support track. The second trolley includes a patient attachment mechanism configured to support a second patient. The second trolley is configured to move relative to the support track such that the movement of the second trolley is independent of the movement of the first trolley. A collision management assembly is configured to be coupled to one of the first trolley and the second trolley. The collision management assembly includes a bumper that is configured to prevent the first trolley from directly contacting the second trolley.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.