Abstract:
Reliable and durable conductive films formed of conductive nanostructures are described. The conductive films show substantially constant sheet resistance following prolonged and intense light exposure.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
Provided herein is a method of forming a conductive film, the method comprising: providing a coating solution having a plurality of conductive nanostructures and a fluid carrier; moving a web in a machine direction; forming a wet film by depositing the coating solution on the moving web, wherein the wet film has a first dimension extending parallel to the machine direction and a second dimension transverse to the machine direction; applying an air flow across the wet film along the second dimension, whereby at least some of the conductive nanostructures in the wet film are reoriented; and allowing the wet film to dry to provide the conductive film.
Abstract:
The present disclosure relates to methods for tuning the work function of a metal nanostructure-based conductive film by forming a dipole surface layer on individual metal nanostructures.
Abstract:
[Means of overcoming the problem] Method of manufacturing a transparent electrically conductive substrate having an application process whereby a wet layer is formed by applying onto a substrate film a coating liquid comprising metallic nanowires dispersed in a solvent, and a drying process whereby the solvent contained in the abovementioned wet layer is removed by drying, characterised in that the abovementioned drying process includes a process whereby the orientation of the abovementioned metallic nanowires is altered by introducing a forced draft facing towards the substrate from a direction that is different from the longitudinal direction of the substrate film.
Abstract:
The present disclosure relates to modifications to nanostructure based transparent conductors to achieve increased haze/light-scattering with different and tunable degrees of scattering, different materials, and different microstructures and nanostructures.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.