Abstract:
Embodiments disclosed herein include flame holders that may provide recirculated fuel flow therethrough, combustion systems that include such flame holders, and related methods. A fuel and/or fuel-oxidant mixture may pass through one or more openings in the flame holder and, after combustion, the resulting flame may be held at or near a surface of the flame holder including in the one or more openings. Generally, the configuration of the flame holders disclosed herein (e.g., the one or more openings of the flame holders) may recirculate or regulate (e.g., decrease and/or increase) the flow of fuel and/or oxidant therethrough, at least limit flame flashback, improve fuel/oxidant mixing, increase flame stability, regulate where the flame is located in the flame holder, improve the operational stability window of the combustion system, or combinations of the foregoing.
Abstract:
A combustion system includes a fuel distributor configured to output a fuel, an oxidant source configured to output an oxidant, and a mixing tube defining a mixing volume aligned to receive the fuel and oxidant. The mixing tube is shaped to convey the fuel and the oxidant through the mixing volume at a bulk velocity higher than a flame propagation speed. The combustion system includes a flame holder aligned to receive the mixed fuel and oxidant and to support a combustion reaction of the fuel and the oxidant.
Abstract:
A combustion system includes a perforated flame holder, a preheating fuel distributor, a main fuel distributor, an oxidant source, an array of sensors, and a controller. The oxidant source outputs an oxidant. The preheating fuel distributor supports a preheating flame configured to preheat the perforated flame holder by outputting a preheating fuel when the combustion system is in a preheating state. The main fuel source outputs a main fuel in the standard operating state. The perforated flame holder is configured to support a combustion reaction of the main fuel and the oxidant in the standard operating state. The sensors are configured to sense parameters of the preheating flame and the perforated flame holder and to output sensor signals to the controller. The controller executes software instructions that include adjusting the flow of the main fuel, the preheating fuel, and the oxidant responsive to the sensor signals.
Abstract:
A combustion system includes a fuel distributor configured to output a fuel, an oxidant source configured to output an oxidant, and a mixing tube defining a mixing volume aligned to receive the fuel and oxidant. The mixing tube is shaped to convey the fuel and oxidant through the mixing volume at a bulk velocity higher than a flame propagation speed. The combustion system includes a perforated flame holder aligned to receive the mixed fuel and oxidant and to support a combustion reaction of the fuel and oxidant.
Abstract:
A combustion system supports a swirl-stabilized preheating flame with a preheating fuel and an oxidant. The combustion system preheats a perforated flame holder with the preheating flame. After the perforated flame holder has been preheated to the threshold temperature, the combustion system outputs a primary fuel. The perforated flame holder receives a mixture of the primary fuel and the oxidant supports a combustion reaction of the primary fuel and the oxidant.
Abstract:
A combustion system includes a perforated flame holder and a plurality of bluff body members positioned between the perforated flame holder and a fuel source. The fuel source outputs a fuel stream through gaps between the bluff body members toward the perforated flame holder. The perforated flame holder and the bluff body members collectively hold a combustion reaction supported by the fuel stream.
Abstract:
A furnace includes a perforated flame holder formed from an array of tiles. The perforated flame holder is stabilized by a support member extending between at least adjacent tiles. Elongated support members may be positioned to extend through each of the tiles in a respective column of the array of tiles.
Abstract:
A combustion system includes a fuel and oxidant source (101) that outputs fuel and oxidant, a first perforated flame holder (102), and a second perforated flame holder (102) separated from the first perforated flame holder by a gap (105). The first and second perforated flame holders sustain a combustion reaction of the fuel and oxidant within the first and second perforated flame holders.