FLUORINE DOPING A SOOT PREFORM
    14.
    发明专利

    公开(公告)号:AU2002356564A1

    公开(公告)日:2003-06-17

    申请号:AU2002356564

    申请日:2002-10-15

    Applicant: CORNING INC

    Abstract: The invention includes a method of incorporating fluorine into a preform that may be used to produce an optical article. A method that may be used to practice the invention includes a method of making an optical fiber preform. The method includes reacting a fluorine containing precursor in a flame of a combustion burner without forming a soot, thereby forming a fluorine doping atmosphere. A further method that may be practiced to practice the invention includes the step reacting at least a fluorine containing precursor in a flame of a combustion burner, wherein the precursors reacted in the flame are substantially devoid of the element of silicon, thereby forming a fluorine containing atmosphere for the doping of a soot preform. An additional method that may be used to practice the invention includes the step of reacting at least one precursor in the flame of a combustion burner, wherein said precursors comprise at least one fluorine containing compound and the precursors are substantially free of any silicon containing compound, and the additional step of directing a reaction product of said reacting step toward a soot preform.

    Thermally tunable optical devices
    16.
    发明专利

    公开(公告)号:AU3646901A

    公开(公告)日:2001-07-31

    申请号:AU3646901

    申请日:2001-01-16

    Applicant: CORNING INC

    Abstract: The present invention relates to a tunable optical device 10 that includes an optical fiber device 12 having optical properties that vary with temperature and a heater 14. The heater 14 is thermally coupled to the optical fiber device 12. The heater 14 includes a metal layer 18 and two electrical contacts 20, 22 that are electrically connected to the metal layer 18. The electrical contacts 20, 22 are spaced apart from one another along the metal layer 18. The electrical resistance of the portion of the metal layer 18 between the contacts 20, 22 varies with temperature and serves as a resistive heater. The invention also includes a controller 16 that is electrically connected to the heater 14. The controller 16 provides electrical power to the heater 14 and measures the electrical voltage across the heater 14. The controller 16 compares the measured electrical voltage to a pre-selected reference value. The controller then regulates the amount of electrical current supplied to the heater 14. By regulating the amount of electrical current supplied to the heater 14 the temperature of the heater 14 is controlled.

Patent Agency Ranking