Abstract:
A glass laminate includes at least one chemically-strengthened glass sheets with a thickness not exceeding 2.0 mm and a polymer interlayer between the glass sheets. Flaws are created in the surface of one of the glass sheets in order to weaken the glass laminate upon an impact event on a first side of the laminate, while retaining the strength of the laminate upon impact on the opposing second side of the laminate. The opposing side of the glass sheet with the flaws or a surface of the other glass sheet may be strengthened with an acid etch treatment in order to further strengthen the laminate upon impact on the opposing second side of the laminate.
Abstract:
Example methods of manufacturing a glass mirror apparatus includes the step of providing a chemically strengthened glass sheet with a thickness of less than or equal to about 2 mm. The method further includes the step of applying a reflective layer to the second major surface of the glass sheet to provide a first glass mirror. In further examples, a glass mirror apparatus comprises a chemically strengthened glass sheet with a thickness of less than or equal to about 2 mm. A reflective layer applied to the second major surface of the glass sheet to provide a first glass mirror.
Abstract:
A laminated glass structure is provided that includes: a substrate, a flexible glass sheet, a buffer layer, a first adhesive and a second adhesive. The substrate has a thickness from about 2.5 mm to about 50 mm and primary surfaces. The buffer layer has a thickness from about 0.1 mm to about 2.5 mm and is laminated to the substrate with the first adhesive. The flexible glass sheet has a thickness of no greater than 0.3 mm and is laminated to the buffer layer with the second adhesive. Further, the buffer layer is characterized by an elastic modulus of at least 70 GPa and a coefficient of thermal expansion between about 4 and 25 ppm*° C.−1.
Abstract:
Embodiments of glass articles including a compressive stress (CS) region and a central tension (CT) region, wherein a portion of the CS region extends from the first major surface to a depth of compression (DOC), wherein, when the glass article is in a substantially flat configuration, the CT region has a maximum value (CTflat) that is about 60 MPa or less, and wherein, when the glass article is in a cold bent configuration, CT region comprises a maximum value (CTbent), wherein CTbent/CTflat
Abstract:
Laminated structures include a thin glass sheet with a thickness of less than 600 μm being attached to a metal sheet with an adhesive layer including a thickness of about 100 μm or less. These laminated structures can include planar or curved shapes. Methods of manufacturing a laminated structure are also provided including the step of attaching a glass sheet with a thickness of less than 600 μm to a metal sheet with an adhesive layer including a thickness of about 300 μm or less.
Abstract:
A glass laminate includes at least one chemically-strengthened glass sheets with a thickness not exceeding 2.0 mm and a polymer interlayer between the glass sheets. Flaws are created in the surface of one of the glass sheets in order to weaken the glass laminate upon an impact event on a first side of the laminate, while retaining the strength of the laminate upon impact on the opposing second side of the laminate. The opposing side of the glass sheet with the flaws or a surface of the other glass sheet may be strengthened with an acid etch treatment in order to further strengthen the laminate upon impact on the opposing second side of the laminate.
Abstract:
A laminated glass structure comprising a non-glass substrate and a glass sheet bonded to the non-glass substrate to form the laminated glass structure, wherein the laminated glass structure withstands a ball drop test wherein a 535 g stainless steel ball is dropped from a height of 0.8 m onto the laminated glass structure, with the glass sheet being impacted by the ball. The glass sheet has a thickness such that the glass sheet exhibits, without cracking, deformation to adapt to any shape change of the non-glass substrate as imparted by the ball of the ball drop test.
Abstract:
Disclosed herein are laminated structures comprising a metal sheet including a first face and a second face with a thickness of from about 0.5 mm to about 2 mm extending between the first face and the second face. The laminated structure further includes a first chemically strengthened or non-chemically strengthened glass sheet including a thickness of less than or equal to about 2 mm and a first interlayer attaching the first glass sheet to the first face of the metal sheet. Also disclosed herein are methods of manufacturing a laminated structure comprising the steps of laminating a metal sheet and a first glass sheet together with an interlayer.
Abstract:
Methods and apparatus provide for delivering a controlled supply of gas to at least one aero-mechanical device to impart a gas flow to suspend a material sheet; preventing lateral movement of the material sheet in at least one direction when suspended; and imparting a stream of water, from a side of the material sheet opposite the at least one aero-mechanical device, to dice the material sheet when suspended.
Abstract:
Various embodiments provide an article including a substrate and a coating thereon including a functionalized fluorine containing compound crosslinked with a multifunctional siloxane resin. A method of forming the article includes applying a multifunctional siloxane resin to a substrate, applying a functionalized fluorine containing compound to the substrate, and annealing the multifunctional siloxane resin and the functionalized fluorine containing compound.