Abstract:
Embodiments of glass articles including a compressive stress (CS) region and a central tension (CT) region, wherein a portion of the CS region extends from the first major surface to a depth of compression (DOC), wherein, when the glass article is in a substantially flat configuration, the CT region has a maximum value (CTflat) that is about 60 MPa or less, and wherein, when the glass article is in a cold bent configuration, CT region comprises a maximum value (CTbent), wherein CTbent/CTflat
Abstract:
A glass laminate includes at least one chemically-strengthened glass sheets with a thickness not exceeding 2.0 mm and a polymer interlayer between the glass sheets. Flaws are created in the surface of one of the glass sheets in order to weaken the glass laminate upon an impact event on a first side of the laminate, while retaining the strength of the laminate upon impact on the opposing second side of the laminate. The opposing side of the glass sheet with the flaws or a surface of the other glass sheet may be strengthened with an acid etch treatment in order to further strengthen the laminate upon impact on the opposing second side of the laminate.
Abstract:
Methods of manufacturing a glass pane comprise the steps of providing a glass sheet with a thickness of less than about 1.6 mm between a first major surface and a second major surface of the glass sheet. The methods include scoring the first major surface of the glass sheet to provide a boundary score line and a relief score line. In some examples, the method provides a relief score depth that is greater than a boundary score depth. In another example, the method includes the step of placing the glass sheet on a conveyor belt including a Shore A hardness of greater than or equal to 70. In further examples, methods of breaking a glass sheet with an oversized template are provided.
Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the vehicle interior system includes a base having a curved surface, and a glass substrate. The glass substrate has a first major surface, a second major surface, a minor surface connecting the first and second major surfaces, and a thickness in a range from 0.05 mm to 2 mm. The second major surface has a first radius of curvature of 500 mm or greater. When an impactor having a mass of 6.8 kg impacts the first major surface at an impact velocity of 5.35 m/s to 6.69 m/s, the deceleration of the impactor is 120 g (g-force) or less.
Abstract:
In some embodiments, a process comprises applying an adhesive layer to a substrate having a developable shape. The process further comprises initially applying a force to press a thin glass layer against the adhesive layer along a generation line. The generation line moves across the substrate to cold-form the thin glass layer into the shape of the substrate, while maintaining the application of force on areas of the substrate over which the generation line has passed. The application of force is maintained on areas of the substrate over which the generation line has passed until the adhesive cures.
Abstract:
A laminated glass structure comprising a non-glass substrate and a glass sheet bonded to the non-glass substrate to form the laminated glass structure, wherein the laminated glass structure withstands a ball drop test wherein a 535 g stainless steel ball is dropped from a height of 0.8 m onto the laminated glass structure, with the glass sheet being impacted by the ball. The glass sheet has a thickness such that the glass sheet exhibits, without cracking, deformation to adapt to any shape change of the non-glass substrate as imparted by the ball of the ball drop test.
Abstract:
Methods of manufacturing a glass pane comprise the steps of providing a glass sheet with a thickness of less than about 1.6 mm between a first major surface and a second major surface of the glass sheet. The methods include scoring the first major surface of the glass sheet to provide a boundary score line and a relief score line. In some examples, the method provides a relief score depth that is greater than a boundary score depth. In another example, the method includes the step of placing the glass sheet on a conveyor belt including a Shore A hardness of greater than or equal to 70. In further examples, methods of breaking a glass sheet with an oversized template are provided.
Abstract:
Laminated structures comprise a metal sheet including a first face and a second face with a thickness of from about 0.5 mm to about 2 mm extending between the first face and the second face. The laminated structure further includes a first chemically strengthened glass sheet including a thickness of less than or equal to about 1.1 mm and a first interlayer attaching the first chemically strengthened glass sheet to the first face of the metal sheet. In further examples, methods of manufacturing a laminated structure comprise the steps of laminating with a metal sheet and a first chemically strengthened glass sheet together with an interlayer.
Abstract:
Laminated structures include a thin glass sheet with a thickness of less than 600 μm being attached to a metal sheet with an adhesive layer including a thickness of about 100 μm or less. These laminated structures can include planar or curved shapes. Methods of manufacturing a laminated structure are also provided including the step of attaching a glass sheet with a thickness of less than 600 μm to a metal sheet with an adhesive layer including a thickness of about 300 μm or less.
Abstract:
In some embodiments, a process comprises applying an adhesive layer to a substrate having a developable shape. The process further comprises initially applying a force to press a thin glass layer against the adhesive layer along a generation line. The generation line moves across the substrate to cold-form the thin glass layer into the shape of the substrate, while maintaining the application of force on areas of the substrate over which the generation line has passed. The application of force is maintained on areas of the substrate over which the generation line has passed until the adhesive cures.