Abstract:
A layered catalyst reactor system and process for hydrotreatment of hydrocarbon feedstocks. The layered catalyst system reactors comprise vertical bed layers including a demetallization catalyst layer, multiple layers of supported hydrotreating catalyst layer, and multiple alternating layers of supported hydrocracking catalysts and self-supported hydrotreating catalysts. The arrangement of the catalyst layers mitigates the risk of temperature run-aways, with improvements in hydrotreatment performance.
Abstract:
The present disclosure refers to systems and methods for efficiently converting a C1-C3 alkane such as natural gas to a liquid C2-C10 product and hydrogen. Generally, the process comprises flowing the C1-C3 alkane through a plurality of tubes within a vessel wherein the tubes house a catalyst for converting the C1-C3 alkane to the liquid C2-C10 product and hydrogen. The C1-C3 alkane is heated under suitable conditions to produce the liquid C2-C10 product and hydrogen. Advantageously, the C1-C3 alkane is heated by burning a fuel outside the tubes in fuel burning nozzles configured to transfer heat from the burning through the tubes.
Abstract:
A layered catalyst reactor system and process for hydrotreatment of hydrocarbon feedstocks. The layered catalyst system reactors comprise vertical bed layers including a demetallization catalyst layer, multiple layers of supported hydrotreating catalyst layer, and multiple alternating layers of supported hydrocracking catalysts and self-supported hydrotreating catalysts. The arrangement of the catalyst layers mitigates the risk of temperature run-aways, with improvements in hydrotreatment performance.
Abstract:
A process is disclosed for opening naphthenic rings of naphthenic ring-containing compounds. Naphthene ring opening is achieved using a self-supported mixed metal sulfide catalyst comprising nickel sulfide, molybdenum sulfide, tungsten sulfide and an organic complexing agent. The catalyst is characterized as having a composition of metal components, in terms of molar ratios; as follows: 0.25≤Ni/(Ni+Mo+W)≤0.80; 0
Abstract:
The present invention is directed to the synthesis of novel stable open metal clusters by selective oxidation of bound ligands. The synthesis comprises, for example, using an amine based oxidant for decarbonylation of specific carbonyl ligands. The synthesis can also comprise further removal of a bound amine group by an acid. The resulting metal cluster contains a coordinatively unsaturated site comprising a carbonyl vacancy. The resulting metal cluster can be used as a catalyst in a variety of chemical transformations.
Abstract:
The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant as metal residuals. In the present disclosure, the metals can be recovered in a chemical precipitation step, wherein the supernatant is mixed with at least one of an acid, a sulfide-containing compound, a base, and combinations thereof to precipitate at least 50% of metal ions in at least one of the metal residuals, wherein the precipitation is carried out at a pre-select pH. The precipitate is isolated and recovered, yielding an effluent stream. The precipitate and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction. The process generates an effluent to waste treatment containing less than 50 ppm metals.