Abstract:
Metal nanoparticle-deposited, nitrogen-doped carbon adsorbents are disclosed, along with methods of removing sulfur compounds from a hydrocarbon feed stream using these adsorbents.
Abstract:
An ion mobility mass spectrometry (IMMS) method is disclosed for evaluating petroleum feedstock compositions. The method is useful to determine, e.g., nitrogen speciation in chemical components of a petroleum composition and may be used to evaluate hydroprocessing catalyst performance.
Abstract:
Provided is an improved alkylation process using a delaminated SSZ-70 catalyst. The process comprises contacting a hydrocarbon feedstock comprising olefins and isoparaffins with a catalyst comprising delaminated SSZ-70 under alkylating reaction conditions. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing an elimination of mass transfer in comparison with regular SSZ-70. This prevents coke formation inside zeolite channels and improves catalyst stability.
Abstract:
An integrated system for monitoring a chemical concentration in an ionic liquid, comprising: a. an online FTIR instrument with an ATR window; b. a sample conditioning station that removes light hydrocarbons and produces a degassed ionic liquid that is analyzed by FTIR; and c. a solvent flushing system that flows solvent across the ATR window. Also, a process for monitoring the chemical concentration, comprising: a. degassing the ionic liquid in the sample conditioning station; b. passing the degassed ionic liquid over an ATR window; c. periodically redirecting a flow of the degassed ionic liquid via a bypass line or an on-off valve that isolates the ATR window from the process unit that elutes the ionic liquid; and d. flowing a solvent and a purging gas over the ATR window during the periodically redirecting step c); and e. resuming the passing of the degassed ionic liquid over the ATR window.
Abstract:
Provided is an improved process for olefin oligomerization allowing one to realize superior selectivity. The process comprises contacting a hydrocarbon feed comprised of straight and branched chain olefins under oligomerization conditions with a catalyst comprising delaminated SSZ-70. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing for elimination of mass transfer in comparison with regular SSZ-70. The result is superior selectivity.
Abstract:
Provided is an improved process for olefin oligomerization allowing one to realize superior selectivity. The process comprises contacting a hydrocarbon feed comprised of straight and branched chain olefins under oligomerization conditions with a catalyst comprising delaminated SSZ-70. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing for elimination of mass transfer in comparison with regular SSZ-70. The result is superior selectivity.
Abstract:
Provided is an improved alkylation process using a delaminated SSZ-70 catalyst. The process comprises contacting a hydrocarbon feedstock comprising olefins and isoparaffins with a catalyst comprising delaminated SSZ-70 under alkylating reaction conditions. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing an elimination of mass transfer in comparison with regular SSZ-70. This prevents coke formation inside zeolite channels and improves catalyst stability.
Abstract:
An improved hydrotreating catalyst and process for making a base oil product wherein the catalyst comprises a base extrudate that includes a high nanopore volume amorphous silica alumina (ASA) and a second amorphous silica alumina. The catalyst and process generally involve the use of a base extrudate comprising the high nanopore volume ASA and the second ASA in a catalyst to produce hydrotreated dewaxed base oil products by contacting the catalyst with a hydrocarbon feedstock. The catalyst base extrudate advantageously comprises a first amorphous silica alumina having a pore volume in the 11-20 nm pore diameter range of 0.2 to 1.0 cc/g and a second amorphous silica alumina having a pore volume in the 11-20 nm pore diameter range of 0.02 to 0.2 cc/g, with the base extrudate formed from the amorphous silica alumina and the alumina having a total pore volume in the 2-50 nm pore diameter range of 0.12 to 1.80 cc/g. The catalyst further comprises at least one modifier element from Groups 6 to 10 and Group 14 of the Periodic Table. The catalyst and process provide improved aromatics saturation.
Abstract:
A process is disclosed for opening naphthenic rings of naphthenic ring-containing compounds. Naphthene ring opening is achieved using a self-supported mixed metal sulfide catalyst comprising nickel sulfide, molybdenum sulfide, tungsten sulfide and an organic complexing agent. The catalyst is characterized as having a composition of metal components, in terms of molar ratios; as follows: 0.25≤Ni/(Ni+Mo+W)≤0.80; 0