Abstract:
High optical quality glass windows, particularly of low melting and low viscosity glasses and substantially free of defects, particularly adapted for high energy laser applications, are made by stirring the molten glass during cooling without the use of a mechanical stirrer within the glass, by rotating the mold or crucible in which the glass is cooling, using a motion which is not entirely a circular and rotary motion.
Abstract:
A new method for preparing low loss multimode and monomode glass optical fibers which avoids casting or pouring the core and clad melts is disclosed. The new technique is based on a reactive-gas-transport approach which avoids contamination from absorbing impurities and scattering centers by reacting the glass melt with reactive gases which remove impurities and increase the refractive index of the fiber.
Abstract:
A method for fabricating defect-free optical fiber preforms without light scattering defects such as core-clad interface bubbles, core-clad crystalline inclusions and core glass crystals involves first forming a cladding glass shell preferably by rotational casting, then separately melting core glass inside a cylindrical crucible and quenching using metallic quenching blocks to prevent crystal formation in the core glass, next heating the core containing crucible to the core glass softening point and also heating the cladding tube containing mold to the glass transition temperature of the cladding glass, then placing the cladding tube containing mold inside the core glass crucible and pushing it downwardly with high pressure so that the softened core glass is forced into the cladding glass tube, and finally the preform is annealed to remove thermal stress. Subsequently, the preform is drawn into optical fibers using conventional technology.
Abstract:
Improved fluoride glass optical fibers are produced by a process introducing several improvements in the production of fluoride glass preforms and the drawing of fibers therefrom. Reduced bubble formation and crystallization are obtained by vertically spinning a fluoride glass melt within a glass cladding tube at a high rotational speed, or alternatively, pouring a flouride glass core melt into a cladding tube while slowly raising the mold from an inclined position to a vertical position, or alternatively, introducing a core tube inside a cladding tube. The production of fibers is enhanced if at least one production phase, i.e., preform formation or fiber drawing, is conducted in an atmosphere containing reactive gases that scavenge molecules that could otherwise react with, hydrolyze and oxidize the fluoride glass. The disclosure also describes several devices uniquely useful in the process of the present invention. In another aspect of the present invention, fluoride glass fibers may be clad with a fluoropolymer which is coated with a polymerizable resin.
Abstract:
A novel solution of H.sub.3 BO.sub.3 dissolved in strong hydrochloric or nitric acid is used to etch fluoride glass preforms used to manufacture fluoride glass fibers. Because of the excellent cleaning ability of the present solution, as well as the absence of sub-micron deposits, the resulting fibers have excellent bending strength.
Abstract:
A fixture for loading and unloading of a PGA chip package (12) into and out of a chip carrier (10) includes a substantially rectangular-shaped solid body member (56) having a central cavity (58). The body member is formed of a left side member (60), a right side member (62), a top side member (64), and a bottom side member (68). A first actuator (70a) is formed on an interior surface (68) of the left side member for contacting a first tab (38a) of the chip carrier (10). The first actuator (70a) includes a first outer, upwardly extending projection (72a) and a first inner, downwardly extending projection (76a). A second actuator (70b) is formed on an interior surface (69) of the right side member for contacting a second tab (38b) of the chip carrier (10). The second actuator (70b) includes a second outer, upwardly extending projection (72b) and a second inner, downwardly extending projection (76b). The first and second upwardly extending projections (72a, 72b) are used to move the tabs from an unlatched position to a latched position so as to allow for the loading and unloading of the chip package. The first and second downwardly extending projections (76a, 76b) are used to move the tabs from the latched position back to the unlatched position so as to retain the package in the chip carrier.
Abstract:
Fluoride glass cladded optical fibers are produced by rotationally casting a fluoride glass cladding tube, introducing core glass melt therein to form a preform, and drawing the preform into a fiber. Disclosed are methods whereby the process may be adopted to the production of multimode, stepped index profile waveguides, single mode waveguides, and waveguides having parabolic index profiles.