Abstract:
A system and method for calibrating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. A condenser sensor outputs a condenser signal corresponding to at least one of a sensed condenser pressure and a sensed condenser temperature. An inverter drive modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor. A control module is connected to the inverter drive and determines a measured condenser temperature based on the condenser signal, monitors electric power data and compressor speed data from the inverter drive, calculates a derived condenser temperature based on the electric power data, the compressor speed data, and compressor map data for the compressor, compares the measured condenser temperature with the derived condenser temperature, and updates the compressor map data based on the comparison.
Abstract:
A system and method for monitoring an overheat condition of a compressor is provided. A compressor connected to an evaporator. A suction sensor outputs a suction signal corresponding to a temperature of refrigerant entering the compressor. A control module is connected to the evaporator sensor and the suction sensor and determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheat condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold.
Abstract:
A counterweight cover for a compressor is provided and may include an annular body having a recess at least partially defined by an outer circumferential portion, an inner circumferential portion, and an upper portion connecting the outer circumferential portion and the inner circumferential portion. A suction baffle may be disposed on the annular body and may direct a flow of suction gas within the compressor.
Abstract:
A system and method for calculating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. An evaporator sensor outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature. An inverter drive modulates electric power delivered to the compressor to modulate a speed of the compressor. The control module is connected to the inverter drive and receives the evaporator signal, monitors electrical power data and compressor speed data from the inverter drive, and calculates at least one of a condenser temperature and a condenser pressure based on the evaporator signal, the electrical power data, and the compressor speed data.
Abstract:
A system and method for calibrating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. A condenser sensor outputs a condenser signal corresponding to at least one of a sensed condenser pressure and a sensed condenser temperature. An inverter drive modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor. A control module is connected to the inverter drive and determines a measured condenser temperature based on the condenser signal, monitors electric power data and compressor speed data from the inverter drive, calculates a derived condenser temperature based on the electric power data, the compressor speed data, and compressor map data for the compressor, compares the measured condenser temperature with the derived condenser temperature, and updates the compressor map data based on the comparison.
Abstract:
A system and method for evaluating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. A condenser sensor and an evaporator sensor are provided. An inverter drive modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor. A monitor module receives compressor power data and compressor speed data from the inverter drive, determines a measured condenser temperature based on the condenser signal, determines a measured evaporator temperature based on the evaporator signal, calculates a first derived condenser temperature based on the compressor power data and the compressor speed data, calculates a second derived condenser temperature based on the measured evaporator temperature, the compressor power data and the compressor speed data, and compares the measured condenser temperature with the first and second derived condenser temperatures to determine whether any of the measured condenser temperature and the first and second derived condenser temperatures are inaccurate.
Abstract:
A system includes a compressor having a shell housing a compression mechanism driven by an electric motor in an on state and not driven by the electric motor in an off state. The system also includes a variable frequency drive that drives the electric motor in the on state by varying a frequency of a voltage delivered to the electric motor and that supplies electric current to a stator of the electric motor in the off state to heat the compressor.
Abstract:
A system and method for monitoring an overheat condition of a compressor is provided. A compressor connected to an evaporator. A suction sensor outputs a suction signal corresponding to a temperature of refrigerant entering the compressor. A control module is connected to the evaporator sensor and the suction sensor and determines an evaporator temperature, calculates a suction superheat temperature based on the evaporator temperature and the suction signal, and monitors an overheat condition of the compressor by comparing the suction superheat with a predetermined suction superheat threshold.