Abstract:
A system may include a compressor, a first passageway, a valve and a control module. The compressor includes a compression mechanism operable to compress a working fluid. The first passageway is in fluid communication with an oil sump of the compressor and the compression mechanism. The valve is disposed along the first passageway and movable between an open position allowing lubricant from the oil sump to flow to the compression mechanism and a closed position restricting lubricant from the oil sump from flowing to the compression mechanism. The control module is in communication with the valve and configured to move the valve between the closed position and the open position based on an operating parameter indicative of a temperature of the compression mechanism.
Abstract:
An oil balancing system for a multiple compressor system is provided. The oil balancing system includes an oil equalization line disposed between a first compressor and a second compressor. A first solenoid valve is provided in the oil equalization line. A first signal corresponds to a first oil level in the first compressor. A second signal corresponds to a second oil level in the second compressor. An oil balancing module uses the first signal and the second signal to diagnose an oil imbalance between the first compressor and the second compressor, and applies corrective action, whereby the corrective action includes sending control signals to operate at least one of the first compressor, the second compressor, or the first solenoid valve in a way that eliminates the oil imbalance.
Abstract:
A climate-control system may include a compressor and a control module. The compressor includes a motor driving a compression mechanism to compress a working fluid. The control module is in communication with the motor and may be configured to determine a balance speed of the motor at which a forward-rotational inertial force of the compression mechanism is equal to a backward-rotational gas force on the compression mechanism. The control module may be configured to adjust a running speed of the motor to the balance speed after receipt of a compressor-shutdown-command and before shutting down the compressor.
Abstract:
A system includes a plurality of compressors, an evaporator, an expansion device, and a system controller. The compressors may be linked in parallel. The system controller may: determine a saturated evaporator temperature, a saturated condensing temperature, and a target capacity demand; determine an estimated system capacity and an estimated power consumption for each compressor operating configuration; compare the estimated system capacity with the target capacity demand and an error tolerance value; select an optimum operating mode based on the comparisons and based on the estimated power consumption; and command activation and deactivation of the plurality of compressors to achieve the selected optimum operating mode. The optimum operating mode may be selected after the normal system logic achieves a steady state and may be selected from a group having the estimated system capacity within the error tolerance of the target capacity demand and a lowest associated power consumption value.
Abstract:
A climate-control system may include a compressor and a control module. The compressor includes a motor driving a compression mechanism to compress a working fluid. The control module is in communication with the motor and may be configured to determine a balance speed of the motor at which a forward-rotational inertial force of the compression mechanism is equal to a backward-rotational gas force on the compression mechanism. The control module may be configured to adjust a running speed of the motor to the balance speed after receipt of a compressor-shutdown-command and before shutting down the compressor.
Abstract:
A drive controller for a motor of a compressor includes a drive circuit that applies voltages to windings of the motor. A speed control module controls the drive circuit to rotate the motor at a requested speed. A speed determination module generates the requested speed based on a speed demand from a system controller. A lost rotor control module identifies a lost rotor condition and, in response to identifying the lost rotor condition, instructs the speed determination module to set the requested speed to an override speed that is lower than the speed demand. The lost rotor control module identifies the lost rotor condition in response to a comparison of a speed error with an adaptive threshold. The speed error is based on a difference between requested and estimated speeds of the motor. During first and second system states, the adaptive threshold is set to first and second thresholds, respectively.
Abstract:
A drive controller for a motor of a compressor includes a drive circuit that applies voltages to windings of the motor. The drive controller includes a speed control module that controls the drive circuit to rotate the motor at a requested speed. The drive controller includes a speed determination module that generates the requested speed. The drive controller includes a locked rotor protection module that identifies a locked rotor condition and, in response to identifying the locked rotor condition, instructs the speed determination module to power down the motor. The locked rotor protection module acquires an estimated speed of the motor upon expiration of a predetermined time interval that begins upon startup of the motor. The locked rotor protection module identifies the locked rotor condition in response to the estimated speed being lower than a threshold speed. The threshold speed is based on the requested speed.