Abstract:
An indoor air quality (IAQ) system for a building includes an IAQ sensor that is located within the building and that is configured to measure an IAQ parameter. The IAQ parameter is one of: an amount of particulate of at least a predetermined size present in air; an amount of volatile organic compounds (VOCs) present in air; and an amount of carbon dioxide present in air. A mitigation module is configured to: selectively turn on a mitigation device based on a comparison of the IAQ parameter with a first ON threshold and a second ON threshold; and selectively turn off the mitigation device based on a comparison of the IAQ parameter with an OFF threshold. A clean module is configured to determine a clean value for the IAQ parameter. A thresholds module is configured to, based on the clean value, determine the first ON threshold and the OFF threshold.
Abstract:
A system includes a variable-capacity compressor operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. A variable-speed blower is operable at a first speed and at a second speed that is higher than the first speed. A control module is configured to (i) receive indoor relative humidity data corresponding to an indoor relative humidity (ii) switch the variable-capacity compressor between the first capacity mode and the second capacity mode based on a demand signal from a thermostat and the indoor relative humidity and (iii) switch the variable-speed blower between the first speed and the second speed based on the demand signal from the thermostat and the indoor relative humidity.
Abstract:
A compressor is provided and may include a shell, a compression mechanism, a motor, and a diagnostic system that determines a system condition. The diagnostic system may include a processor and a memory and may predict a severity level of the system condition based on at least one of a sequence of historical-fault events and a combination of the types of the historical-fault events.
Abstract:
A system includes a compressor and a compressor motor functioning in a refrigeration circuit. A sensor produces a signal indicative of one of current and power drawn by the motor and a liquid-line temperature sensor provides a signal indicative of a temperature of liquid circulating within the refrigeration circuit. Processing circuitry processes the current or power signal to determine a condenser temperature of the refrigeration circuit and a subcooling value of the refrigeration circuit from the condenser temperature and the liquid-line temperature signal.
Abstract:
First and second IAQ sensors are located within a building and are configured to measure first and second IAQ parameters, respectively, the first and second IAQ parameter being the same one of: relative humidity; amount of particulate; amount of volatile organic compounds; and amount of carbon dioxide. A mitigation device is separate from an HVAC system and includes a control module configured to turn the mitigation device on and off based on the first IAQ parameter, the second IAQ parameter, and whether the HVAC system is on or off. A mitigation module is configured to selectively turn the HVAC system on and off based on the second IAQ parameter, the first IAQ parameter, and whether the HVAC system is on or off.
Abstract:
An IAQ sensor module includes: a sensor configured to measure an amount of an item in air, the item being one of particulate matter, volatile organic compounds, and carbon dioxide; a minimum module configured to selectively store the amount of the item as a minimum value of the amount when a mitigation device has been on for at least a predetermined period, the mitigation device being configured to decrease the amount of the item in the air when on; a storing module configured to selectively store the minimum value as an initial minimum value; an offset module configured to determine a drift offset for the sensor based on a difference between the minimum value and the initial minimum value; and an adjustment module configured to determine an adjusted amount of the item in the air at the IAQ sensor module based on the amount and the drift offset.
Abstract:
An indoor air quality (IAQ) system for a building includes an IAQ sensor that is located within the building and that is configured to measure an IAQ parameter, the IAQ parameter being one of: a relative humidity (RH) of air; an amount of particulate of at least a predetermined size present in air; an amount of volatile organic compounds (VOCs) present in air; and an amount of carbon dioxide present in air. A mitigation module is configured to: selectively turn on a mitigation device based on a comparison of the IAQ parameter with a first threshold; and selectively turn off the mitigation device based on a comparison of the IAQ parameter with a second threshold. A thresholds module is configured to: set the first and second thresholds to predetermined default values; and selectively adjust at least one of the first and second thresholds.
Abstract:
A condition identification module is configured to, based on output from the at least one of a microphone and a camera, indicate an occurrence of a user having a physical condition. A correlation module is configured to, based on the occurrence of the user having the physical condition and at least one of a temperature of air, a relative humidity of air, an amount of particulate of at least a predetermined size present in air, an amount of VOCs present in air, and an amount of carbon dioxide present in air, selectively identify the presence of a correlation between the occurrence of the user having the physical condition and the at least one of the temperature, the RH, the amount of particulate, the amount of VOCs, and the amount of carbon dioxide.
Abstract:
A climate-control system may include a variable-capacity compressor unit and a control module controlling the compressor unit. The compressor unit may be operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. The control module may be configured to switch the compressor unit among a shutdown state, the first capacity mode and the second capacity mode based on a demand signal and outdoor-air-temperature
Abstract:
A system and method for a compressor may include an inverter drive connected to the compressor that receives electric power and modulates a speed of the compressor by modulating a frequency of the electric power. A control module connected to the inverter drive monitors compressor power data and compressor speed data from the inverter drive, and calculates a saturated condenser temperature of a refrigeration system associated with the compressor based on the compressor power data and the compressor speed data.