Abstract:
A climate-control system may include a variable-capacity compressor unit and a control module controlling the compressor unit. The compressor unit may be operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. The control module may be configured to switch the compressor unit among a shutdown state, the first capacity mode and the second capacity mode based on a demand signal and outdoor-air-temperature data.
Abstract:
A system includes a variable-capacity compressor operable at a first capacity and at a second capacity that is higher than the first capacity and an outdoor-air-temperature sensor. A control module receives a demand signal from a thermostat and operates the variable-capacity compressor in a first mode when communication with the outdoor-air-temperature sensor has not been interrupted and in a fault mode when communication with the outdoor-air-temperature sensor has been interrupted. In the first mode, the control module switches the variable-capacity compressor between the first capacity and the second capacity based on the demand signal and the outdoor-air-temperature data. In the fault mode, the control module operates the variable-capacity compressor by operating the variable-capacity compressor at least one of the first capacity and the second capacity based on the demand signal.
Abstract:
An indoor air quality (IAO) system comprises a temperature sensor is configured to measure a temperature of air within a building, a relative humidity (RH) sensor is configured to measure a RH of the air within the building and at least one of a thermostat and an IAO control module is configured to, during cooling of the air within the building, based on the RH, control operation of: a blower of an air handler unit of a heating, ventilation, and air conditioning (HVAC) system of the building; and a compressor of a condenser unit of the HVAC system of the building. The at least one of the thermostat and the IAO control module is configured to, while the compressor is off: operate the blower at a first predetermined speed when the RH is less than a first predetermined RH but greater than a second predetermined RH; and operate the blower at a second predetermined speed that is greater than the first predetermined speed when the RH is less than the second predetermined RH.
Abstract:
A system includes a converter and a controller to control a compressor and operates without receiving power supply from a thermostat. The converter receives a demand signal from the thermostat that is used to power the controller and charge a capacitor. When the thermostat de-asserts the demand signal, the charged capacitor powers the controller, which saves system parameters in a nonvolatile memory and enters a power save mode. The life of the nonvolatile memory is extended by alternately storing the system parameters in different memory locations. The system normalizes outdoor ambient temperature (OAT) during a demand cycle. The system determines OAT slope, which is used to select durations to operate the compressor at different capacities, by performing time based calculations during a demand cycle, demand cycle based calculations at the start of a demand cycle, or time and demand cycle based calculations during a demand cycle.
Abstract:
A system includes a variable-capacity compressor operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. A variable-speed blower is operable at a first speed and at a second speed that is higher than the first speed. A control module is configured to (i) receive indoor relative humidity data corresponding to an indoor relative humidity (ii) switch the variable-capacity compressor between the first capacity mode and the second capacity mode based on a demand signal from a thermostat and the indoor relative humidity and (iii) switch the variable-speed blower between the first speed and the second speed based on the demand signal from the thermostat and the indoor relative humidity.
Abstract:
A climate-control system includes a variable-capacity compressor. An outdoor ambient temperature sensor indicates a temperature of the outdoor ambient air. A return air temperature sensor indicates a temperature of the return air in the system. A controller commands a startup compressor stage based on the temperature from the outdoor ambient temperature sensor and commands a running compressor stage based on a time-based slope of the temperature from the return air temperature sensor and the startup compressor stage.
Abstract:
A climate-control system includes a variable-capacity compressor, an outdoor ambient temperature sensor, a user-controlled device, and a control module. The outdoor ambient temperature sensor indicates a temperature of outdoor ambient air. The user-controlled device provides a demand signal indicating a demand for at least one of heating and cooling. The control module commands a compressor stage and a stage run time based on the temperature from the outdoor ambient temperature sensor and the demand signal. The control module also modifies a lockout threshold based on a cycle run time, where the cycle run time is an actual run time for the compressor to meet a setpoint temperature.
Abstract:
A system includes a variable-capacity compressor operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. A control module is configured to switch the variable-capacity compressor between the first capacity mode and the second capacity mode based on a demand signal from the thermostat. The control module determines a number of previous consecutive operating cycles of the variable-capacity compressor in the first capacity mode within a predetermined period of time. The control module operates the variable-capacity compressor in the second capacity mode in response to the number of previous consecutive operating cycles of the variable-capacity in the first capacity mode within the predetermined period of time exceeding a predetermined threshold.
Abstract:
A climate-control system includes a variable-capacity compressor unit operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode and a control module configured to (i) switch the variable-capacity compressor unit between the first capacity mode and the second capacity mode based on a demand signal, a current outdoor air temperature, and an outdoor-air-temperature slope, (ii) select a region based on a first comparison of at least one outdoor-air-temperature value with a predetermined outdoor-air-temperature range and a second comparison of at least one outdoor-relative-humidity value with a predetermined outdoor-relative-humidity range, and (iii) set at least one system operating parameter based on the selected region, the at least one system operating parameter including at least one of a high-capacity runtime of the variable-capacity compressor unit, a low-capacity runtime of the variable-capacity compressor unit, and a fan speed.