Abstract:
The proposed technology provides a computationally efficient way to find suitable routes under consideration of multiple metrics. The considered multi-hop network is represented by a connected graph having nodes and links interconnecting the nodes. The method comprises the step (S1) of obtaining a value of a reference route between a source node and a destination node in the connected graph according a first routing metric. The method further comprises the step (S2) of modifying, based on the value of the reference route according to the first routing metric, the connected graph by modifying link cost, with respect to a second routing metric, of at least one link in the connected graph. The method also comprises the step (S3) of determining at least part of a route between the source node and the destination node in the modified connected graph, based on the modified link cost, according to the second routing metric.
Abstract:
Channel-state information and hybrid-ARQ ACK/NACK information for multiple carriers are simultaneously transmitted using a PUCCH Format 3 structure, where the hybrid-ARQ ACK/NACK bits and CSI bits are separately encoded and interleaved. In an example method, a power control offset parameter is calculated (2110) as a linear combination of at least a number N, representing a number of channel-state information bits and a number M, representing a number of hybrid-ARQ ACK/NACK bits. The method continues with the calculating (2120) of a power level for a transmission on a physical uplink control channel (PUCCH), using the power control offset parameter. In some embodiments, encoded channel-state information and hybrid- ARQ ACK/NACK bits are then transmitted (2060) according to the calculated power level. In some embodiments, the linear combination is of the form aN + bM + c, where a, b, and c are non-zero constants.
Abstract:
The invention relates to methods and communication devices in a network comprising the steps of mapping (S2) and allocating a first random access resource to a first frequency in an uplink subframe of a radio frame, and transmitting (S4) an expression on the radio channel expressing mapping of the first random access resource to use in relation to at least one uplink subframe.
Abstract:
Methods are disclosed for supporting transmission of broadcast messages using multiple types of control channels. An example method begins with receiving (1110) a message from each of several user terminals, each message indicating whether the corresponding user terminal supports the receipt of broadcast messages via the second control channel type. In some embodiments, one or more of these messages may indicate that the corresponding user terminal monitors only the second control channel type for broadcast messages. The control node subsequently initiates (1120) a transmission of a broadcast message to one of the user terminals from one or more base stations in a tracking area for the user terminal. This initiation includes indicating to the one or more base stations whether user terminal supports the receipt of broadcast messages via the second control channel type, based on information earlier received by the control node.
Abstract:
Techniques for avoiding or reducing unnecessary CSI and/or SRS transmissions in a wireless communications system. In an example method, a user terminal periodically transmits (620) CSI and/or SRS according to corresponding periodic CSI transmission opportunities or periodic SRS transmission opportunities, or both, during a first period in which the UE is operating according to a short DRX cycle. In a second period immediately following the first period and during which the user terminal is operating according to a long DRX cycle, the user terminal reduces or suppresses (630) periodic transmissions of CSI and/or SRS. This may be done, for example, by suppressing periodic transmission of CSI and/or SRS, after a first delay time or first delay times or by reducing the rate of transmission of CSI and/or SRS, after a second delay time or second delay times. A combination of these and other disclosed approaches may be used.