Abstract:
An embodiment of the present invention provides a quantization method for weights of a plurality of batch normalization layers, including: receiving a plurality of previously learned first weights of the plurality of batch normalization layers; obtaining first distribution information of the plurality of first weights; performing a first quantization on the plurality of first weights using the first distribution information to obtain a plurality of second weights; obtaining second distribution information of the plurality of second weights; and performing a second quantization on the plurality of second weights using the second distribution information to obtain a plurality of final weights, and thereby reducing an error that may occur when quantizing the weight of the batch normalization layer.
Abstract:
Provided is a wireless charging apparatus for performing wireless charging of an electronic device including a receiving coil located in a three-dimensional (3D) wireless charging zone using a plurality of transmitting coils arranged in the 3D wireless charging zone and at least one power source configured to supply a current to the plurality of transmitting coils.
Abstract:
Provided is a wireless charging apparatus for performing wireless charging of an electronic device including a receiving coil located in a three-dimensional (3D) wireless charging zone using a plurality of transmitting coils arranged in the 3D wireless charging zone and at least one power source configured to supply a current to the plurality of transmitting coils.
Abstract:
An open type resonance coil without dual loops having a serial type in-phase direct power feeding method without dual loops is provided. A transmission device is configured as two resonators and to feed power in phase, the transmission device is configured as a power feeding loop without a resonance coil, two transmission devices are connected in series, and winding directions of coils of half of the two transmission devices connected by a conductive wire are opposite.
Abstract:
A method and device for controlling a resonant inductor for implementing ZVS in a push-pull parallel resonant inverter is closed. The present disclosure provides A device comprising: a converter including a full-bridge circuit in which a first switch and a second switch form a first leg and a third switch and a fourth switch form a second leg and configured to convert a DC into an AC by turning on or off the switches; a resonant inductor circuit including a resonant inductor and a resonant switch connected in series and connected between two output nodes of the converter; a transmission coil connected in parallel with the resonant inductor circuit; and a controller configured to convert the DC into the AC by providing a switching timing for turning on or off the switches and control a switching timing of the resonant switch based on switching timings of the switches.
Abstract:
Provided is a wireless power reception apparatus which receives a power from a wireless power transmission apparatus. A wireless power reception apparatus which receives a power from a wireless power transmission apparatus, the wireless power reception apparatus comprising a duty controller configured to control a duty cycle; a power converter configured to convert an effective load resistance according to the duty cycle; a reception resonator configured to receive a power from a transmission coil of the wireless power transmission apparatus, wherein the duty cycle and a current of the transmission coil is adjusted based on a load resistance of the wireless power reception apparatus.
Abstract:
Provided is a wireless power transmission device to reduce an electromagnetic wave except for a signal to be transmitted during wireless power transmission, the wireless power transmission device including a transmitter configured to generate a magnetic field by inputting a high-frequency power signal generated by a transmission circuit into a first coil, a receiver configured to generate an induced current by allowing the generated magnetic field to pass through a second coil, and a reducer configured to reduce a harmonic component of the high-frequency power signal using a third coil inserted on a path between the transmitter and the receiver.
Abstract:
Provided is an energy charging apparatus including a transponder configured to transmit and receive radio energy, and a resonator configured to transmit the radio energy transmitted from the transponder to at least one external device and transmit the radio energy received from the at least one external device to the transponder, wherein each of the transponder and the resonator is provided in a form of a single module.
Abstract:
A method and apparatus for multi-level stepwise quantization for neural network are provided. The apparatus sets a reference level by selecting a value from among values of parameters of the neural network in a direction from a high value equal to or greater than a predetermined value to a lower value, and performs learning based on the reference level. The setting of a reference level and the performing of learning are iteratively performed until the result of the reference level learning satisfies a predetermined value and there is no variable parameter that is updated during learning among the parameters.
Abstract:
Provided is a battery charging method using wireless power transmission, the method including: receiving a first message associated with a battery charge start from a reception apparatus; discovering an optimal frequency band for a transmit power signal to be transmitted to the reception apparatus based on the first message; receiving, from the reception apparatus, a second message that includes an extra power value and a charge power value, and is associated with a charge state of the reception apparatus; and adaptively controlling transmit power so that the extra power value is maintained to be constant in proportion to a relationship between the charge power value and a first parameter, based on the second message.