Abstract:
Sealing device for providing seals between adjacent components, and turbomachines utilizing such sealing devices, are provided. A sealing device includes a seal plate insertable between the adjacent components, the seal plate comprising a first face and an opposing second face. The sealing device further includes a plurality of pins extending from one of the first face or the second face, the plurality of pins configured to space the one of the first face or the second face from contact surfaces of the adjacent components.
Abstract:
Aft frame assemblies for a gas turbine transition pieces include a body comprising an exterior surface and a plurality of interior surfaces, one or more exterior cooling holes disposed on the exterior surface of the body for capturing compressor discharge air outside of the transition piece, and a supplemental component bonded to at least one of the plurality of interior surfaces of the body. At least one cooling channel is at least partially defined by the supplemental component and the interior surface that the supplemental component is bonded to, wherein the at least one cooling channel fluidly connects at least one of the one or more exterior cooling holes to one or more interior cooling outlets that discharge the compressor discharge air captured from the at least one of the one or more exterior cooling holes.
Abstract:
A core for forming micro channels within a turbine component is provided. The core includes a base comprising a first side and a second side; and a core assembly coupled to the second side. The core assembly further includes a plurality of channel members, wherein each channel member has a first end, a second end, and a channel body coupled to and extending between said first end and said second end. The channel body includes a channel shape configured to form the micro channels within the turbine component.
Abstract:
A method of manufacturing a component and a method of thermal management are provided. The methods include forming at least one portion of the component, printing a cooling member of the component and attaching the at least one portion to the cooling member of the component. The cooling member includes at least one cooling feature. The at least one cooling feature includes at least one cooling channel adjacent to a surface of the component, wherein printing allows for near-net shape geometry of the cooling member with the at least one cooling channel being located within a range of about 127 (0.005 inches) to about 762 micrometers (0.030 inches) from the surface of the component. The method of thermal management also includes transporting a fluid through at least one fluid pathway defined by the at least one cooling channel within the component to cool the component.
Abstract:
A hot gas path component for a turbine system is disclosed. The hot gas path component includes a shell and one or more porous media having an exterior surface and an interior surface and positioned adjacent the shell. The one or more porous media is configured to include varying permeability in one of an axial direction, a radial direction, an axial and a radial direction, an axial and a circumferential direction, a radial and a circumferential direction or an axial, a radial and a circumferential direction, the porous media is positioned adjacent the shell. The one or more porous media is further configured to control one of an axial, a radial, an axial and a radial, an axial and a circumferential, a radial and a circumferential or an axial, a radial and a circumferential flow of a cooling medium flowing therethrough.
Abstract:
A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate.
Abstract:
The present disclosure is directed to a turbomachine that includes a hot gas path component having an inner surface and defining a hot gas path component cavity. An impingement insert is positioned within the hot gas path component cavity. The impingement insert includes an inner surface and an outer surface and defines an impingement insert cavity and a plurality of impingement apertures fluidly coupling the impingement insert cavity and the hot gas path component cavity. A plurality of pins extends from the outer surface of the impingement insert to the inner surface of the hot gas path component.
Abstract:
An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
Abstract:
The present disclosure is directed to a turbomachine that includes a hot gas path component having an inner surface and defining a hot gas path component cavity. An impingement insert is positioned within the hot gas path component cavity. The impingement insert includes an inner surface and an outer surface and defines an impingement insert cavity and a plurality of impingement apertures fluidly coupling the impingement insert cavity and the hot gas path component cavity. A plurality of pins extends from the outer surface of the impingement insert to the inner surface of the hot gas path component.
Abstract:
A cooled structure has a leading edge, a trailing edge, a first side portion orthogonal to each of the leading and trailing edge, and a second side portion opposite the first side portion and substantially orthogonal to each of the leading and trailing edge. The cooled structure includes a substrate surface defined by boundaries including the leading edge, trailing edge, first side and second side portion. A first set of cooling channels beneath the substrate surface extends from a first set of inlets proximate to the first side portion to a first set of exits proximate to the second side portion. A second set of cooling channels beneath the substrate surface extends from a second set of inlets proximate to the second side portion to a second set of exits proximate to the first side portion. Each first inlet overlaps with an exit of the second set of exits.