Abstract:
Systems and methods for calibrating a navigation heading are provided. A client device may display navigation information to a user. The client device may display a floor plan of a building with a navigation route superimposed on the floor plan. The client device may also display a video as received from a camera with the navigation route superimposed on the video. By displaying the route on the captured imagery, the client device may direct the user along the route without the user having knowledge of the direction in which they are facing when beginning the route. As the user travels along the route, the heading by which the client device directs the user may grow increasingly inaccurate. Therefore, the client device may include an interface to allow the user to recalibrate the heading (e.g., by straightening a displayed path) to ensure that an accurate navigation path is displayed.
Abstract:
The present disclosure describes methods, systems, and apparatuses for determining the likelihood that two wireless scans of a mobile computing device were performed in the same location. The likelihood is determined by scanning for wireless networks with a computing device. The scanning includes a receiving a plurality of network attributes for each wireless networks within the range of the mobile computing device. Further, the likelihood is determined by comparing the plurality of network attributes from the scanning with a reference set of network attributes. The comparing of network attributes is used to determine an attribute comparison. Finally, the likelihood between a position associated with the reference set of network attributes and the computing device, based on the attribute comparison, determines a position associated with the network.
Abstract:
A mobile device includes at least one imaging sensor to capture imagery of an environment of the mobile device, a privacy filter module, a spatial feature detection module, an assembly module, and a network interface. The privacy filter module is to perform at least one image-based privacy filtering process using the captured imagery to generate filtered imagery. The spatial feature detection module is to determine a set of spatial features in the filtered imagery. The assembly module is to generate an area description file representative of the set of spatial features. The network interface is to transmit the area description file to a remote computing system. The assembly module may select only a subset of the set of spatial features for inclusion in the area description file.
Abstract:
Disclosed are apparatus and methods for providing outputs; e.g., location estimates, based on trained Gaussian processes modeling signals of wireless signal emitters. A computing device can determine first and second trained Gaussian processes. The respective first and second Gaussian processes can be based on first and second hyperparameter values related to first and second wireless signal emitters. The computing device can determine first and second sets of comparison hyperparameter values of the respective first and second hyperparameter values, and then determine whether the first and second sets of comparison hyperparameter values are within one or more threshold values. After determining that the first and second sets of comparison hyperparameter values are within the threshold(s), the computing device can determine the first and second Gaussian processes are dependent and then provide an estimated-location output based on a representative Gaussian process based on the first and the second Gaussian processes.
Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to receive user input regarding copresence detection settings for a first user device, the copresence detection settings comprising a location and/or a user access control list, and determine a current location of the first user device. The system may determine whether copresence detection of the first user device is enabled at the current location based on the copresence detection settings and the current location. Based on determining that copresence detection is enabled, the system may refine copresence and perform an action based on fine grain copresence of the first and second user device.
Abstract:
In one example, a method includes determining, by a processor operating in a first power mode and based on first motion data, a first activity of a user, transitioning from operating in the first power mode to operating in a second power mode, wherein the processor consumes less power while operating in the second power mode than in the first power mode, responsive to determining, while the processor is operating in the second power mode and based on second motion data, that a change in an angle relative to gravity satisfies a threshold, transitioning from operating in the second power mode to operating in the first power mode, determining, by the processor and based on second motion data, a second activity of the user, and, responsive to determining that the second activity is different from the first activity, performing an action.
Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to: process one or more signals to determine coarse grain location information of a first device and a second device; determine whether the first device and the second device are copresent based on the coarse grain location information; in response to determining that the first device and the second device are copresent based on the coarse grain location information, transmit a signal to the second device to alert the second device to listen for a fine grain copresence token from the first device; and refine copresence based on receiving an indication that the second device has received the fine grain copresence token.
Abstract:
The present disclosure describes methods, systems, and apparatuses for determining the distance between two wireless scans of a mobile computing device. The distance is determined by scanning for wireless networks with a computing device. The scanning includes a receiving a plurality of network attributes for each wireless networks within the range of the mobile computing device. Further, the distance is determined by comparing the plurality of network attributes from the scanning with a reference set of network attributes. The comparing of network attributes is used to determine an attribute comparison. Finally, the distance between a position associated with the reference set of network attributes and the computing device, based on the attribute comparison, determines a position associated with the network.
Abstract:
Methods and systems for determining a location of a mobile device using a multi-modal Kalman filter are described. According to an example method, a mobile device may maintain multiple approximations of a location of a mobile device. Each approximation includes an estimated geographic location of the mobile device that is determined by filtering a respective subset of location estimates received by the mobile device using a respective Kalman filter, and one of the multiple approximations is designated as an active approximation. The method also involves receiving data indicating an estimate of a geographic location of the mobile device and, based on a distance between the estimate of the geographic location and a given approximation of the multiple approximations, updating the given approximation using the estimate of the geographic location. Additionally, the method involves providing for display a visual indication of an estimated geographic location associated with the active approximation.
Abstract:
Disclosed are apparatus and methods for providing outputs; e.g., location estimates, based on trained Gaussian processes. A computing device can determine trained Gaussian processes related to wireless network signal strengths, where a particular trained Gaussian process is associated with one or more hyperparameters. The computing device can designate one or more hyperparameters. The computing device can determine a hyperparameter histogram for values of the designated hyperparameters of the trained Gaussian processes. The computing device can determine a candidate Gaussian process associated with one or more candidate hyperparameter value for the designated hyperparameters. The computing device can determine whether the candidate hyperparameter values are valid based on the hyperparameter histogram. The computing device can, after determining that the candidate hyperparameter values are valid, add the candidate Gaussian process to the trained Gaussian processes. The computing device can provide an estimated location output based on the trained Gaussian processes.