Abstract:
Network interface devices with remote storage control. In some embodiments, a network interface device may include receiver circuitry and remote storage device control circuitry. The remote storage device control circuitry may be coupled to the receiver circuitry and may share a physical support with the receiver circuitry. The remote storage device control circuitry may be configured to control writing of data from the receiver circuitry to a remote storage device that does not share a physical support with the remote storage device control circuitry.
Abstract:
Methods, apparatus, and systems for implementing in Network Interface Controller (NIC) flow switching. Switching operations are effected via hardware-based forwarding mechanisms in apparatus such as NICs in a manner that does not employ use of computer system processor resources and is transparent to operating systems hosted by such computer systems. The forwarding mechanisms are configured to move or copy Media Access Control (MAC) frame data between receive (Rx) and transmit (Tx) queues associated with different NIC ports that may be on the same NIC or separate NICs. The hardware-based switching operations effect forwarding of MAC frames between NIC ports using memory operations, thus reducing external network traffic, internal interconnect traffic, and processor workload associated with packet processing.
Abstract:
Technologies for controlling operation of a compute node coupled to a computer network via a computing device that includes communications for communicating with the computer network and persistent instructions such as firmware for providing control functions to the computing device, wherein the control functions being defined at least in part by protocol data. An update control module of the computing device may receive update data from a remote node in the computer network via the communications, wherein the update data comprising new protocol data for the persistent instructions. A protocol parser module may parse the update data and generate metadata relating to the update data. A classifier module may receive rules for the control functions, wherein the rules are based at least in part on the update data and metadata. A compiler may compile the parsed update data to the persistent instructions for providing new control functions to the computing device based at least in part on the received rules.
Abstract:
Technologies for controlling operation of a compute node coupled to a computer network via a computing device that includes communications for communicating with the computer network and persistent instructions such as firmware for providing control functions to the computing device, wherein the control functions being defined at least in part by protocol data. An update control module of the computing device may receive update data from a remote node in the computer network via the communications, wherein the update data comprising new protocol data for the persistent instructions. A protocol parser module may parse the update data and generate metadata relating to the update data. A classifier module may receive rules for the control functions, wherein the rules are based at least in part on the update data and metadata. A compiler may compile the parsed update data to the persistent instructions for providing new control functions to the computing device based at least in part on the received rules.
Abstract:
Methods, apparatus, and systems for implementing in Network Interface Controller (NIC) flow switching. Switching operations are effected via hardware-based forwarding mechanisms in apparatus such as NICs in a manner that does not employ use of computer system processor resources and is transparent to operating systems hosted by such computer systems. The forwarding mechanisms are configured to move or copy Media Access Control (MAC) frame data between receive (Rx) and transmit (Tx) queues associated with different NIC ports that may be on the same NIC or separate NICs. The hardware-based switching operations effect forwarding of MAC frames between NIC ports using memory operations, thus reducing external network traffic, internal interconnect traffic, and processor workload associated with packet processing.
Abstract:
Methods, apparatus, and systems for implementing in Network Interface Controller (NIC) flow switching. Switching operations are effected via hardware-based forwarding mechanisms in apparatus such as NICs in a manner that does not employ use of computer system processor resources and is transparent to operating systems hosted by such computer systems. The forwarding mechanisms are configured to move or copy Media Access Control (MAC) frame data between receive (Rx) and transmit (Tx) queues associated with different NIC ports that may be on the same NIC or separate NICs. The hardware-based switching operations effect forwarding of MAC frames between NIC ports using memory operations, thus reducing external network traffic, internal interconnect traffic, and processor workload associated with packet processing.
Abstract:
Technologies for aligning network flows to processing resources include a computing device having multiple processing nodes, a network switch, and a network controller operating in a software-defined network. Each processing node of the computing device may include a processor, memory, and network adapter. The network switch may receive a network packet and request forwarding information from the network controller. The network controller may determine flow information corresponding to the network packet that indicates the application targeted by the network packet and the processing node executing the application. The flow information may be transmitted to the computing device, which may program a flow filter in the network adapter of the processing node executing the application. The network controller may also transmit forwarding information to the network switch, which may forward the received network packet to the network adapter of the processing node executing the application based on the forwarding information.
Abstract:
An embodiment may include circuitry to be included, at least in part, in at least one node in a network. The circuitry may generate, at least in part, and/or receive, at least in part, at least one packet. The packet may be received, at least in part, by at least one switch node in the network. The switch node may designate, in response at least in part to the packet, at least one port of the switch node to be used to facilitate, at least in part, establishment, at least in part, of at least one path for propagation of at least one flow between at least two other nodes in the network. The packet may be generated based at least in part upon (1) at least one application classification, (2) at least one allocation request, and (3) network resource availability information.
Abstract:
Technologies for aligning network flows to processing resources include a computing device having multiple processing nodes, a network switch, and a network controller operating in a software-defined network. Each processing node of the computing device may include a processor, memory, and network adapter. The network switch may receive a network packet and request forwarding information from the network controller. The network controller may determine flow information corresponding to the network packet that indicates the application targeted by the network packet and the processing node executing the application. The flow information may be transmitted to the computing device, which may program a flow filter in the network adapter of the processing node executing the application. The network controller may also transmit forwarding information to the network switch, which may forward the received network packet to the network adapter of the processing node executing the application based on the forwarding information.
Abstract:
Technologies for aligning network flows to processing resources include a computing device having multiple processing nodes, a network switch, and a network controller operating in a software-defined network. Each processing node of the computing device may include a processor, memory, and network adapter. The network switch may receive a network packet and request forwarding information from the network controller. The network controller may determine flow information corresponding to the network packet that indicates the application targeted by the network packet and the processing node executing the application. The flow information may be transmitted to the computing device, which may program a flow filter in the network adapter of the processing node executing the application. The network controller may also transmit forwarding information to the network switch, which may forward the received network packet to the network adapter of the processing node executing the application based on the forwarding information.