Abstract:
One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
Abstract:
One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
Abstract:
An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.
Abstract:
One embodiment provides for a machine-learning hardware accelerator comprising a compute unit having an adder and a multiplier that are shared between integer data path and a floating-point datapath, the upper bits of input operands to the multiplier to be gated during floating-point operation.
Abstract:
A mechanism is described for facilitating smart collection of data and smart management of autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and combining a first computation directed to be performed locally at a local computing device with a second computation directed to be performed remotely at a remote computing device in communication with the local computing device over the one or more networks, where the first computation consumes low power, wherein the second computation consumes high power.
Abstract:
An apparatus to facilitate processing of a sparse matrix is disclosed. The apparatus includes a plurality of processing units each comprising one or more processing elements, including logic to read operands, a multiplication unit to multiply two or more operands and a scheduler to identify operands having a zero value and prevent scheduling of the operands having the zero value at the multiplication unit.
Abstract:
A mechanism is described for facilitating efficient training of neural networks at computing devices. A method of embodiments, as described herein, includes detecting one or more inputs for training of a neural network, and introducing randomness in floating point (FP) numbers to prevent overtraining of the neural network, where introducing randomness includes replacing less-significant low-order bits of operand and result values with new low-order bits during the training of the neural network.
Abstract:
A dynamic runtime scheduling system includes task manager circuitry capable of detecting a correspondence in at least a portion of the output arguments from one or more first tasks with at least a portion of the input arguments to one or more second tasks. Upon detecting the output arguments from the first task represents a superset of the second task input arguments, the task manager circuitry apportions the first task into a plurality of new subtasks. At least one of the new subtasks includes output arguments having a 1:1 correspondence to the second task input arguments. Upon detecting the output arguments from an first task represents a subset of the second task input arguments, the task manager circuitry may autonomously apportion the second task into a plurality of new subtasks. At least one of the new subtasks may include input arguments having a 1:1 correspondence to first task output arguments.
Abstract:
A method and apparatus to facilitate shared pointers in a heterogeneous platform. In one embodiment of the invention, the heterogeneous or non-homogeneous platform includes, but is not limited to, a central processing core or unit, a graphics processing core or unit, a digital signal processor, an interface module, and any other form of processing cores. The heterogeneous platform has logic to facilitate sharing of pointers to a location of a memory shared by the CPU and the GPU. By sharing pointers in the heterogeneous platform, the data or information sharing between different cores in the heterogeneous platform can be simplified.
Abstract:
Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.