Abstract:
A wireless transmit/receive unit (WTRU) and a Node B, respectively, perform joint randomness not shared by others (JRNSO) measurement to generate JRNSO bits based on a channel estimate between the WTRU and the Node B. The WTRU and the Node B then perform a reconciliation procedure to generate a common JRNSO bits. The Node B sends the common JRNSO bits to a serving network. The WTRU and the SN secure a session key (such as an integrity key, a cipher key and an anonymity key), using the common JRNSO bits. The JRNSO measurements are performed on an on-going basis, and the session key is updated using a new set of common JRNSO bits. The JRNSO bits may be expanded by using a pseudorandom number generator (PNG) or a windowing technique. A handover may be intentionally induced to increase the JRNSO bits generation rate.
Abstract:
A method and apparatus for efficient operation of an enhanced dedicated channel (E-DCH) are disclosed. A physical layer processing includes computation of various control parameters followed by actual processing of the data to be transmitted. In accordance with the present invention, the computation of the control parameters is performed asynchronously from the associated data operation. A medium access control (MAC) layer provides information needed for computation of the control parameters to the physical layer as early as possible, while the data is being processed in parallel. The provided data includes a hybrid automatic repeat request (H-ARQ) profile, a transport block size, power offset, or the like. By sending this data to the physical layer before MAC-e processing is complete, the latency constraint can be significantly relaxed.
Abstract:
A system and method for providing variable security levels in a wireless communication network. The present invention optimizes the often conflicting demands of highly secure wireless communications and high speed wireless communications. According to a preferred embodiment of the present invention, various security sensors are scanned to determine the likely presence of an intruder within a predetermined trust zone. If an intruder is likely present, the security level is changed to the highest setting, and consequently a lower data rate, while the intruder is identified. If the identified intruder is in fact a trusted node, the security level is returned to a lower setting. If the identified intruder is not a trusted node, the security level is maintained at an elevated state while the intruder is within the trust zone.
Abstract:
A wireless transmit receive unit (WTRU) and methods are used in a wireless communication system to process sampled received signals to establish and/or maintain wireless communications (Fig 9 & 10). A selectively controllable coherent accumulation unit produces power delay profiles. A selectively controllable post processing unit passes threshold qualified magnitude approximation values and PDP positions to a device such as a rake receiver to determine receive signal paths.
Abstract:
The present invention relates to a method for constructing a perfectly secret key within a group of nodes. In a group of m nodes, pair-wise secret keys are assigned. Based on pair-wise secret keys, these m nodes generate a group- wise perfectly secret key. In a preferred embodiment, each node communicates with every other node through public noiseless broadcasts.
Abstract:
Paging in a HSDPA connected mode CELL_PCH or URA-PCH state. A WTRU is configured to select various PICH information that is broadcast by a base station (in the HSDPA associated PICH info" information element of a System Information block 5/5bis) by compiling a list of cabdidate PICHs, and selecting a PICH info based on the U-RNTI of the WTRU. The WTRU is configured to receive paging messages, based on the selected PICH information. In one embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH, a HS-SCCH, and a HS-PDSCH. In another embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH and a HS-PDSCH. In both embodiments, a time delay parameter (for timing the transmission of the PICH and the transmission of a paging message) is preferably used so that the WTRU may listen for either the HS-SCCH or HS-PDSCH for a period of time and return to a sleep mode if no paging message is received.
Abstract:
A method and apparatus for encoding channel quality indicator (CQI) and precoding control information (PCI) bits are disclosed. Each of input bits, such as CQI bits and/or PCI bits, has a particular significance. The input bits are encoded with a linear block coding. The input bits are provided with an unequal error protection based on the significance of each input bit. The input bits may be duplicated based on the significance of each input bit and equal protection coding may be performed. A generator matrix for the encoding may be generated by elementary operation of conventional basis sequences to provide more protection to a most significant bit (MSB).
Abstract:
A method and apparatus for controlling transmission of a channel quality indicator (CQI) in a wireless communication system are disclosed. A wireless transmit/receive unit (WTRU) determines, at each transmission time interval (TTI), whether a CQI timer has expired. The CQI timer is reset each time a CQI is sent out by the WTRU. If the CQI timer has expired, the WTRU determines whether a CQI reporting opportunity exists in a current TTI. The WTRU sends a CQI if a CQI reporting opportunity exists in the current TTI. Otherwise, the WTRU waits for a next TTI. The CQI reporting opportunity exists when there is uplink data to be transmitted in the current TTI, when the WTRU needs to send a positive acknowledgement (ACK) or a negative acknowledgement (NACK) in the current TTI, or when a dedicated physical control channel (DPCCH) burst is scheduled to be transmitted in the current TTI.
Abstract:
A wireless communication method and apparatus for generating a scheduling grant based on a relative grant are disclosed. A wireless transmit/receive unit (WTRU) receives an absolute grant from a serving radio link set (RLS) and receives a relative grant from the serving RLS and at least one non-serving radio link (RL). The WTRU decodes enhanced dedicated channel (E-DCH) absolute grant channel (E-AGCH)E-AGCH signals to detect an absolute grant, and decodes E-DCH relative grant channel (E-RGCH)E-RGCH signals to detect at least one relative grant. The WTRU then calculates a serving grant based on the detected absolute grant and/or the relative grant(s). The relative grant may be detected by performing a hypothesis test on the E-RGCH signals. A multiple alternative hypothesis test is performed for detecting the E-RGCH signals from the serving RLS and a binary hypothesis test is performed for detecting the E-RGCH signals from the at least one non-serving RL. A reliability test may be further performed on the E-RGCH signals.
Abstract:
A protocol engine (PE) for processing data within a protocol stack in a wireless transmit/receive unit (WTRU) is disclosed. The protocol stack executes decision and control operations. The data processing and re-formatting which was performed in a conventional protocol stack is removed from the protocol stack and performed by the PE. The protocol stack issues a control word for processing data and the PE processes the data based on the control word. Preferably, the WTRU includes a shared memory and a second memory. The shared memory is used as a data block place holder to transfer the data amongst processing entities. For transmit processing, the PE retrieves source data from the second memory and processed the data while moving the data to the shared memory based on the control word. For receive processing, the PE retrieves received data from the shared memory and processes it while moving the data to the second memory.