Abstract:
DC-DC power converters with GaN switches, magnetic inductors and CMOS power drivers integrated through face-to-face wafer bonding techniques are provided. In one aspect, an integrated DC-DC power converter includes: a Si CMOS chip having at least one Si CMOS transistor formed thereon; a GaN switch chip, bonded to the Si CMOS chip in a face-to-face manner, having at least one GaN transistor formed thereon; and an on-chip magnetic inductor present either on the Si CMOS chip or on the GaN switch chip. A method of forming an integrated DC-DC power converter is also provided.
Abstract:
Techniques for integrating DC-DC power converters with other on-chip circuitry are provided. In one aspect, an integrated DC-DC power converter includes: a GaN transistor chip having at least one GaN switch formed thereon; an interposer chip, bonded to the GaN transistor chip, having at least one power driver transistor formed thereon; TSVs present in the interposer chip adjacent to the power driver transistor and which connect the power driver transistor to the GaN switch; and an on-chip magnetic inductor formed either on the GaN transistor chip or on the interposer chip. A method of forming a fully integrated DC-DC power converter is also provided.
Abstract:
Techniques for integrating DC-DC power converters with other on-chip circuitry are provided. In one aspect, an integrated DC-DC power converter includes: a GaN transistor chip having at least one GaN switch formed thereon; an interposer chip, bonded to the GaN transistor chip, having at least one power driver transistor formed thereon; TSVs present in the interposer chip adjacent to the power driver transistor and which connect the power driver transistor to the GaN switch; and an on-chip magnetic inductor formed either on the GaN transistor chip or on the interposer chip. A method of forming a fully integrated DC-DC power converter is also provided.
Abstract:
Solutions for forming a silicided deep trench decoupling capacitor are disclosed. In one aspect, a method of forming a semiconductor device includes: forming an outer trench in a silicon substrate, the forming exposing portions of the silicon substrate below an upper surface of the silicon substrate; depositing a dielectric liner layer inside the trench; depositing a doped polysilicon layer over the dielectric liner layer, the doped polysilicon layer forming an inner trench in the silicon substrate; forming a silicide layer over a portion of the doped polysilicon layer; forming an intermediate contact layer within the inner trench; and forming a contact over a portion of the intermediate contact layer and a portion of the silicide layer.
Abstract:
A wafer handler with a removable bow compensating layer and methods of manufacture is disclosed. The method includes forming at least one layer of stressed material on a front side of a wafer handler. The method further includes forming another stressed material on a backside of the wafer handler which counter balances the at least one layer of stressed material on the front side of the wafer handler, thereby decreasing an overall bow of the wafer handler.
Abstract:
Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
Abstract:
A capacitor in a semiconductor substrate employs a conductive through-substrate via (TSV) as an inner electrode and a columnar doped semiconductor region as an outer electrode. The capacitor provides a large decoupling capacitance in a small area, and does not impact circuit density or a Si3D structural design. Additional conductive TSV's can be provided in the semiconductor substrate to provide electrical connection for power supplies and signal transmission therethrough. The capacitor has a lower inductance than a conventional array of capacitors having comparable capacitance, thereby enabling reduction of high frequency noise in the power supply system of stacked semiconductor chips.