Abstract:
An oil void fraction is measured by a simple way. A method of measuring an oil void fraction comprises a step of obtaining each oil void fraction of a plurality of sample oils, the void fraction thereof already-known, that are introduced into a closed space, compressing each sample oil with a predetermined pressure and measuring a volume change of the sample oil when compressed, and obtaining a calibration line for each sample oil, that is a linear function by connecting values represented by a product of the pressure at OkPa and the volume change plotted against the pressure when it is compressed to the predetermined pressure, a step of obtaining a value of a test oil sample having an unknown void fraction, that is represented by a product of the pressure at OkPa and the volume change plotted against the pressure when it is compressed to the predetermined pressure; and a step of determining the unknown void fraction of the test oil sample by comparing the value of the test sample oil to the calibration line of each sample oil.
Abstract:
To reduce a length in a longitudinal direction of a mixer, and to provide a mixer that is attachable even in a small space for mounting. The mixer comprises an electromagnetic wave input terminal 6 configured to receive the electromagnetic wave from the electromagnetic wave oscillator, a high voltage pulse input terminal 5 provided separately from the electromagnetic wave input terminal 6 and configured to receive the high voltage pulse from the high voltage pulse generator, a high voltage pulse output terminal 50 configured to output the electromagnetic wave and the high voltage pulse to the ignition device, an electromagnetic wave leakage prevention structure 3 arranged between the high voltage pulse input terminal 5 and the high voltage pulse output terminal 50 and arranged in an axis similar with both the terminals, an insulator 4 surrounding the electromagnetic wave leakage prevention structure 3 and the high voltage pulse output terminal 50, a cylindrical conductive member surrounding a part of the insulator 4, the cylindrical conductive member forming a resonator 2 connected to the electromagnetic wave input terminal 6, an inner conductor member 6a of the electromagnetic wave input terminal 6 is exposed toward an annular space 20 inside the resonator 2, and an impedance matching adjuster 7 is arranged inside the resonator 2.
Abstract:
An injector unit that can use a gaseous fuel such as CNG in an already-existing diesel engine and a spark plug that uses the injector unit, are provided. The injector unit includes an injector, an igniter having a resonance structure configured to boost an inputted microwave and a discharger configured to perform a discharge, and a casing configured to house therein the injector and the igniter. The igniter includes a first part configured to transmit the inputted microwave, a second part configured to perform a capacity coupling to attain an impedance matching between the microwave and the igniter, and a third part configured to transmit the capacity-coupled microwave to the discharger. Moreover, the igniter is bent at a boundary of the first part and the second part, a boundary of the second part and the third part, or inside the first part.
Abstract:
To provide an ignition plug having low power loss even though iron is a main component of a center electrode thereof, to which a high frequency power such as a microwave is electrically supplied. A low impedance layer 6 composed of a material having magnetic permeability lower than iron is provided between an outer peripheral surface of a center electrode 2 and an inner peripheral surface of an axial hole 30 of an insulator 3. The low impedance layer 6 is in contact with at least the outer peripheral surface (surface) of the center electrode 2, thereby reducing power loss of an electromagnetic wave flowing on the surface of the center electrode 2. More particularly, the low impedance layer 6 is made of silver, copper, gold, aluminum, tungsten, molybdenum, titanium, zirconium, niobium, tantalum, bismuth, palladium, lead, tin, an alloy composed mainly of these metals, or a composite material of these metals.
Abstract:
The purpose of the present invention is to provide an electromagnetic wave emission device in which the destination to which an electromagnetic wave is supplied can be switched among a plurality of emission antennas, wherein there are no problems such as breakage of a switching element even in a case where a large-power electromagnetic wave is emitted. The present invention is an electromagnetic wave emission device characterized by the following: an electromagnetic wave output from an electromagnetic wave generator is distributed to a plurality of emission antennas, and then from among the plurality of emission antennas, a target antenna having plasma nearby is supplied with an electromagnetic wave distributed to the target antenna and all or part of the electromagnetic waves reflected by the emission antennas other than the target antenna; and the all or part of the electromagnetic waves distributed to the target antenna and all or part of the electromagnetic waves supplied to the target antenna after reflection by the emission antennas other than the target antenna are emitted from the target antenna to the plasma.
Abstract:
In a high frequency switch device 33 that switches an output terminal 42 , from which high frequency is outputted, from among a plurality of output terminals 42, to perform the switching the output terminal 42, from which high frequency is outputted, at high speed and with low loss. In the high frequency switch device 33, a branch transmission line 45 corresponding to each output terminal 42 is provided with a switching part 46. In the branch transmission line 45, the switching part 46 includes a transmission side diode 63 that is provided in such a manner that a cathode thereof is arranged on a side of an input terminal 41 and an anode thereof is arranged on a side of the output terminal 42, and a ground side diode 65 that is provided in such a manner that a cathode thereof is grounded and an anode thereof is electrically connected between the output terminal 42 and the transmission side diode 63 in the branch transmission line 45. The branch transmission line 45 includes a first capacitor 51 and a second capacitor 52 on the side of the output terminal 42 from the transmission side diode 63 in such a manner that the anode of the ground side diode 65 is connected between the first capacitor 51 and the second capacitor 52.
Abstract:
To suppress the reflection of an electromagnetic wave from a load in a plasma generation device 30 that generates electromagnetic wave plasma by emitting the electromagnetic wave to a combustion chamber 10 of an engine 20. The plasma generation device 30 includes an electromagnetic wave oscillator 33 that oscillates the electromagnetic wave, an antenna 15a for emitting the electromagnetic wave oscillated by the electromagnetic wave oscillator to the combustion chamber 10 of the engine 20, and a stub adjustment unit 52, 53. The stub 51 is provided on a transmission line 60 for electromagnetic wave from the electromagnetic wave oscillator 33 to the antenna 15a. While the engine 20 is operating, the stub adjustment unit 52, 53 adjusts a short circuit location on the stub 51 based on the intensity of a reflected wave of the electromagnetic wave reflected from the antenna 15a.
Abstract:
In a compression ignition internal combustion engine 20 that generates electromagnetic wave plasma by emitting electromagnetic waves to a combustion chamber 21 during a period of a preceding injection, a condition of combustion of fuel from a main injection is stably optimized in response to a change in operating condition of an internal combustion engine main body 22. A control device 10 for internal combustion engine controls a fuel injection device 24 to perform, before a main injection, a preceding injection less in injection quantity than the main injection, while controlling a plasma generation device 30 to generate electromagnetic plasma by emitting electromagnetic waves to the combustion chamber 21 during the period of the preceding injection. The control device 10 controls a condition of heat production due to combustion of fuel from the main injection by controlling the amount of energy of the electromagnetic waves emitted to the combustion chamber 21 during the period of the preceding injection according to the operating condition of the internal combustion engine main body 22.
Abstract:
The analysis apparatus 10 includes a plasma generation device 11 and an optical analysis device 13. The plasma generation device 11 generates initial plasma by energizing a substance in space to be turned into a plasma state, and maintains the plasma state by irradiating the initial plasma with electromagnetic wave for a predetermined period of time. Then, the optical analysis device 13 analyzes the target substance 15 based on a time integral value of intensity of emission from the target substance 15 in an electromagnetic wave plasma region, which is maintained by the electromagnetic wave.
Abstract:
In order to provide an ignition control device 30 which can efficiently control timing of thermal ignition of gaseous mixture in a combustion region 10, the peak estimation part 32, the ignition timing determination part 33, the control timing determination part 34, and the plasma control part 35 control timing of thermal ignition of the gaseous mixture in the combustion region 10 by controlling the pulse generator 36, the electromagnetic wave oscillator 37, the mixer circuit 38, and the spark plug 15 so as to increase the amount of OH radicals in the combustion region 10 during a low-temperature oxidation preparation period that occurs prior to a peak of a heat release rate before the thermal ignition of the gaseous mixture.