Abstract:
The disclosed embodiments relate to a temporomandibular joint prosthesis including a joint portion, a fixation portion, and at least one flexible unit. The joint portion is configured to be as a temporomandibular joint and movably connected to cranial skeleton. The fixation portion is configured to be fixed on mandible. The flexible unit is located between and connected to the joint portion and the fixation portion. The fixation portion is movable with respect to the joint portion via the flexible unit.
Abstract:
A method for fabricating a medical device includes steps as follows: A degradable powder including at least one metal element is firstly provided on a target surface. A focused energy light bean is applied to sinter/cure the biodegradable powder within an oxygen-containing atmosphere; wherein the oxygen concentration of the oxygen-containing atmosphere is adjusted to provide a first oxygen concentration and a second concentration when the focused energy light is driven to a first location and second location of the target surface respectively. The aforementioned processes are then repeatedly carried out to form a three-dimensional (3D) structure of the medical device.
Abstract:
A bionic apparatus is provided. The bionic apparatus includes a flexible portion having a plurality of pores, a rigid portion connected with the flexible portion, and a supporting element disposed in the flexible portion. The pore size of each pore is between 50 μm to 500 μm. The flexible portion, the rigid portion and the supporting element are one-piece formed by a additive manufacturing process.
Abstract:
A fabrication method of magnetic device is provided. A magnetic material is provided. A portion of the magnetic material is selectively irradiated by an energy beam, and reactive gas is introduced simultaneously. The magnetic material being irradiated is melted and solidified to form a solidified layer. An outer layer of the solidified layer reacts with the reactive gas to form a barrier layer, so as to form a magnetic unit including the solidified layer and the barrier layer. It is determined whether the manufacturing process of the same layer is finished, if not, the energy beam is moved to the other portion of the magnetic material. The above step is repeated to overlap multiple magnetic units to form a magnetic layer. If yes, the flow returns to the 1st step to provide another magnetic material to the magnetic layer. The above steps are repeated to form a 3D magnetic device.
Abstract:
An additive manufacturing system is provided. The system includes: a stage, a powder supplying device, an energy beam generating device and an atmosphere controlling module. The powder supplying device provides powder to the stage. The energy beam-generating device generates an energy beam and directs the energy beam to the stage. The atmosphere controlling module includes at least one pair of gas inlet-outlet devices coupled around the stage, and a dynamic gas flow controlling device connected with the gas inlet-outlet devices. The dynamic gas flow controlling device dynamically controls an angle between a flow direction of the gas and a moving direction of the energy beam. The angle is predetermined by a scanning strategy.