Abstract:
The present disclosure provides a device and method for powder distribution and an additive manufacturing method, wherein different size or kind of powders could be chosen to be accommodated within a receptacle. The receptacle can uniformly mix the powder by a rotation movement, pour out the powders by the rotation movement and distribute the powders for forming a layer by a translation movement. In another embodiment, the receptacle further comprises a heating element for preheating the powders. Not only can the present disclosure uniformly mix the powders so as to reduce the thermal deformation and distribute the powder layer compactly, but also can the present disclosure distribute different kinds of powder in different layer so as to increase the diversity in additive manufacturing.
Abstract:
A recoater collision prediction and calibration method for additive manufacturing and a system thereof are provided. The recoater collision prediction and calibration method includes the following steps: loading a printing image file to generate a simulated printing object according to the printing image file; performing a process thermal stress simulation on the simulated printing object to obtain a plurality of simulated deformation variables respectively corresponding to a plurality of prediction results of the simulated printing object in a vertical direction on each layer; obtaining an experimental collision height of an experimental printed object; selecting one of the plurality of simulated deformation variables according to the experimental collision height; calculating a recoater tolerance according to the one of the plurality of simulated deformation variables; calibrating a collision risk formula according to the recoater tolerance; and predicting a collision risk value between the simulated printing object and a recoater according to the collision risk formula.
Abstract:
A smart mechanical component has a mechanical part main body; a mechanical part secondary body located inside of the mechanical part main body; a three dimensional three-dimensional (3-D) reserved space located between the mechanical part main body and the mechanical part secondary body; at least one connecting unit connecting the mechanical part main body and the mechanical part secondary body; wherein the mechanical part main body, the mechanical part secondary body and the three dimensional three-dimensional (3-D) reserved space form a capacitor; the connecting unit forms an inductor; the inductor and the capacitor forms an inductor-capacitor circuit.
Abstract:
An implant device for osseous integration includes a plurality of connection bars and at least one frame bar. These connection bars are connected with each other to form a three-dimensional (3D) grid structure. The frame bar is connected with at least two of the connection bars to define at least one edge of the 3D grid structure. Wherein, the frame bar has a diameter substantially greater than that of these connection bars.
Abstract:
A method for fabricating a medical device includes steps as follows: A degradable powder including at least one metal element is firstly provided on a target surface. A focused energy light bean is applied to sinter/cure the biodegradable powder within an oxygen-containing atmosphere; wherein the oxygen concentration of the oxygen-containing atmosphere is adjusted to provide a first oxygen concentration and a second concentration when the focused energy light is driven to a first location and second location of the target surface respectively. The aforementioned processes are then repeatedly carried out to form a three-dimensional (3D) structure of the medical device.
Abstract:
A bionic apparatus is provided. The bionic apparatus includes a flexible portion having a plurality of pores, a rigid portion connected with the flexible portion, and a supporting element disposed in the flexible portion. The pore size of each pore is between 50 μm to 500 μm. The flexible portion, the rigid portion and the supporting element are one-piece formed by a additive manufacturing process.
Abstract:
A fabrication method of magnetic device is provided. A magnetic material is provided. A portion of the magnetic material is selectively irradiated by an energy beam, and reactive gas is introduced simultaneously. The magnetic material being irradiated is melted and solidified to form a solidified layer. An outer layer of the solidified layer reacts with the reactive gas to form a barrier layer, so as to form a magnetic unit including the solidified layer and the barrier layer. It is determined whether the manufacturing process of the same layer is finished, if not, the energy beam is moved to the other portion of the magnetic material. The above step is repeated to overlap multiple magnetic units to form a magnetic layer. If yes, the flow returns to the 1st step to provide another magnetic material to the magnetic layer. The above steps are repeated to form a 3D magnetic device.
Abstract:
An additive manufacturing system is provided. The system includes: a stage, a powder supplying device, an energy beam generating device and an atmosphere controlling module. The powder supplying device provides powder to the stage. The energy beam-generating device generates an energy beam and directs the energy beam to the stage. The atmosphere controlling module includes at least one pair of gas inlet-outlet devices coupled around the stage, and a dynamic gas flow controlling device connected with the gas inlet-outlet devices. The dynamic gas flow controlling device dynamically controls an angle between a flow direction of the gas and a moving direction of the energy beam. The angle is predetermined by a scanning strategy.
Abstract:
An additive manufacturing method for a 3D object is provided and includes (a) providing a 3D digital model of the 3D object; (b) dividing the 3D digital model into repeat arrangement of at least one type of polyhedral 3D units and an X-Y plane is an acute angle or an obtuse angle; (c) cutting the 3D digital model along a Z-axis into a plurality of 2D slices; (d) defining a scanning path covering one of the 2D slices; (e) providing an energy beam to a material on a working plane along the scanning path to form a construction layer corresponding to the one of the 2D slices; and (f) repeating the steps (d) and (e) to build up the 3D object by adding a plurality of construction layers in sequence.
Abstract:
A fabrication method of magnetic device is provided. A magnetic material is provided. A portion of the magnetic material is selectively irradiated by an energy beam, and reactive gas is introduced simultaneously. The magnetic material being irradiated is melted and solidified to form a solidified layer. An outer layer of the solidified layer reacts with the reactive gas to form a barrier layer, so as to form a magnetic unit including the solidified layer and the barrier layer. It is determined whether the manufacturing process of the same layer is finished, if not, the energy beam is moved to the other portion of the magnetic material. The above step is repeated to overlap multiple magnetic units to form a magnetic layer. If yes, the flow returns to the 1st step to provide another magnetic material to the magnetic layer. The above steps are repeated to form a 3D magnetic device.