Abstract:
An apparatus of adjusting and controlling the stacking-up layer manufacturing comprises a target, a powder providing unit, an energy generating unit, and a magnetism unit. The powder providing unit is coupled on a top of the target. The energy generating unit is also coupled on the top of the target. The powder providing unit provides a powder to a surface of the target. The energy generating unit provides the energy beam to selectively heat the powder on the surface of the target to form a melted or sintered powder layer. The magnetism unit provides a magnetic field to control the solidification of the melted or sintered powder layer.
Abstract:
A method for fabricating a medical device includes steps as follows: A degradable powder including at least one metal element is firstly provided on a target surface. A focused energy light bean is applied to sinter/cure the biodegradable powder within an oxygen-containing atmosphere; wherein the oxygen concentration of the oxygen-containing atmosphere is adjusted to provide a first oxygen concentration and a second concentration when the focused energy light is driven to a first location and second location of the target surface respectively. The aforementioned processes are then repeatedly carried out to form a three-dimensional (3D) structure of the medical device.
Abstract:
A fabrication method of magnetic device is provided. A magnetic material is provided. A portion of the magnetic material is selectively irradiated by an energy beam, and reactive gas is introduced simultaneously. The magnetic material being irradiated is melted and solidified to form a solidified layer. An outer layer of the solidified layer reacts with the reactive gas to form a barrier layer, so as to form a magnetic unit including the solidified layer and the barrier layer. It is determined whether the manufacturing process of the same layer is finished, if not, the energy beam is moved to the other portion of the magnetic material. The above step is repeated to overlap multiple magnetic units to form a magnetic layer. If yes, the flow returns to the 1st step to provide another magnetic material to the magnetic layer. The above steps are repeated to form a 3D magnetic device.
Abstract:
An additive manufacturing system is provided. The system includes: a stage, a powder supplying device, an energy beam generating device and an atmosphere controlling module. The powder supplying device provides powder to the stage. The energy beam-generating device generates an energy beam and directs the energy beam to the stage. The atmosphere controlling module includes at least one pair of gas inlet-outlet devices coupled around the stage, and a dynamic gas flow controlling device connected with the gas inlet-outlet devices. The dynamic gas flow controlling device dynamically controls an angle between a flow direction of the gas and a moving direction of the energy beam. The angle is predetermined by a scanning strategy.
Abstract:
A manufacturing process for electrode of neuromodulation probe includes the steps of: preparing a plurality of the manufacturing fixtures for electrode of neuromodulation probe; preparing a plurality of the manufacturing fixtures for electrode in a surrounding manner by having the first-layer frames to be externally disposed side by side with the bevels of the two neighboring first-layer frames close to each other, so that the second-layer frames, the plurality of electrodes and the plurality of wires are enclosed thereinside; placing a cylinder amid the plurality of manufacturing fixtures for electrode to have the plurality of wires to surround the cylinder; having a fluid plastic to surround the cylinder by filling all the spaces between the plurality of wires and the plurality of electrodes, and waiting the fluid plastic to cure; removing the plurality of first-layer frames and the plurality of second-layer frames; and, pulling off the cylinder.
Abstract:
The disclosure relates to a reconstruction prosthesis including a main section, at least one serpentine structure, and at least one mount section. The at least one serpentine structure is connected to one end of the main section. The at least one mount section is connected to the main section via the at least one serpentine structure. The at least one mount section is configured to be connected to osseous tissue. When the at least one serpentine structure is deformed by force, the relative position of the main section and the at least one mount section is changed.
Abstract:
A smart mechanical component has a mechanical part main body; a mechanical part secondary body located inside of the mechanical part main body; a three dimensional three-dimensional (3-D) reserved space located between the mechanical part main body and the mechanical part secondary body; at least one connecting unit connecting the mechanical part main body and the mechanical part secondary body; wherein the mechanical part main body, the mechanical part secondary body and the three dimensional three-dimensional (3-D) reserved space form a capacitor; the connecting unit forms an inductor; the inductor and the capacitor forms an inductor-capacitor circuit.
Abstract:
An apparatus of adjusting and controlling the stacking-up layer manufacturing comprises a target, a powder providing unit, an energy generating unit, and a magnetism unit. The powder providing unit is coupled on a top of the target. The energy generating unit is also coupled on the top of the target. The powder providing unit provides a powder to a surface of the target. The energy generating unit provides the energy beam to selectively heat the powder on the surface of the target to form a melted or sintered powder layer. The magnetism unit provides a magnetic field to control the solidification of the melted or sintered powder layer.
Abstract:
This disclosure provides a composite beam generator and a method of performing powder melting or sintering in additive manufacturing process using the same. The composite beam generator comprises: a beam splitter for splitting a beam into a first directed beam and a second directed beam; a beam shaper for shaping a transverse energy distribution profile of the second directed beam to non-circular; at least one beam delivery unit for guiding the first directed beam or the second directed beam; and a beam combiner for receiving the first directed beam and the second directed beam, and respectively generating a first output beam and a second output beam, and combining them into the composite beam.
Abstract:
A portable analytical device including at least one optical unit and optionally an adapting device are provided. The optical unit includes a light beam receiving area, a sample holder, a light beam exiting area, and a lens component. The adapting device holds the optical unit and an external hand-held computing device (EHCD), such that the optical unit is coupled to the EHCD.