Abstract:
A semiconductor package includes a semiconductor die attached to a substrate and a magnetic field sensor included as part of the same semiconductor package as the semiconductor die and positioned in close proximity to a current pathway of the semiconductor die so that the magnetic field sensor can sense a magnetic field produced by current flowing in the current pathway. The magnetic field sensor includes a first magnetic field sensing component galvanically isolated from the current pathway and positioned so that a magnetic field produced by current flowing in the current pathway impinges on the first magnetic field sensing component in a first direction. The magnetic field sensor also includes a second magnetic field sensing component galvanically isolated from the current pathway and positioned so that the magnetic field impinges on the second magnetic field sensing component in a second direction different than the first direction.
Abstract:
A power semiconductor package includes a substrate having a plurality of metal leads, a power semiconductor die attached to a first one of the leads and a magnetic field sensor integrated in the same power semiconductor package as the power semiconductor die and positioned in close proximity to a current pathway of the power semiconductor die. The magnetic field sensor is operable to generate a signal in response to a magnetic field produced by current flowing in the current pathway, the magnitude of the signal being proportional to the amount of current flowing in the current pathway.
Abstract:
An electronic device comprises a substrate, at least one electronic chip mounted on and electrically connected to the substrate and being configured as a system control unit for controlling a connected system, a heat removal structure thermally connected to the at least one electronic chip and configured for removing heat generated by the at least one electronic chip upon operation of the electronic device, and an overmolding structure configured for at least partially encapsulating at least the at least one electronic chip and the substrate.
Abstract:
An electronic device comprises a substrate, at least one electronic chip mounted on and electrically connected to the substrate and being configured as a system control unit for controlling a connected system, a heat removal structure thermally connected to the at least one electronic chip and configured for removing heat generated by the at least one electronic chip upon operation of the electronic device, and an overmolding structure configured for at least partially encapsulating at least the at least one electronic chip and the substrate.
Abstract:
A power electronic assembly includes a board having metal layers laminated onto or between electrically insulating layers, and a laminate inlay embedded in the board. A first metal layer provides electrical contacts at a first side of the board. A second metal layer provides a thermal contact at a second side of the board. A third metal layer is positioned between the first metal layer and the laminate inlay and configured to distribute a load current switched by the laminate inlay. A fourth metal layer is positioned between the second metal layer and the laminate inlay and configured as a primary thermal conduction path for heat generated by the laminate inlay during switching of the load current. A first electrically insulating layer separates the fourth metal layer from the second metal layer so that the fourth metal layer is electrically isolated from but thermally connected to the second metal layer.
Abstract:
A transistor device is disclosed. The transistor device includes: a semiconductor body; a source conductor on top of the semiconductor body; a source clip on top of the source conductor and electrically connected to the source conductor; a first active device region arranged in the semiconductor body, covered by the source conductor and the source clip, and including at least one device cell; and a second active device region arranged in the semiconductor body, covered by regions of the source conductor that are not covered by the source clip, and including at least one device cell. The first active device region has a first area specific on-resistance and the second active device region has a second area specific on-resistance, the second area specific on-resistance being greater than the first area specific on-resistance.
Abstract:
A package which comprises an electrically conductive chip carrier, a first chip comprising a first connection terminal, a second connection terminal located on the chip carrier and a control terminal, a second chip comprising a first connection terminal, a second connection terminal located on the chip carrier and a control terminal, wherein the first chip and the second chip are connected to form a half bridge having inlet terminals and an outlet terminal, and a clip having three connection sections connecting the second connection terminal of the first chip with the first connection terminal of the second chip and with the outlet terminal of the half bridge.
Abstract:
A semiconductor chip package includes an electrically conducting carrier and a semiconductor chip disposed over the electrically conducting carrier. The semiconductor chip has a first surface facing the electrically conducting carrier and a second surface opposite the first surface. A metal plate has a first surface mechanically connected to the second surface of the semiconductor chip and a second surface opposite the first surface of the metal plate. The metal plate completely overlaps the second surface of the semiconductor chip. The second surface of the metal plate is at least partially exposed at a periphery of the semiconductor chip package.
Abstract:
A integrated power module with integrated power electronic circuitry and logic circuitry includes an embedded power semiconductor module including one or more power semiconductor dies embedded in a dielectric material, a multi-layer logic printed circuit board with one or more logic dies mounted to a surface of the logic printed circuit board, and a flexible connection integrally formed between the embedded power semiconductor module and the logic printed circuit board. The flexible connection mechanically connects the embedded power semiconductor module to the logic printed circuit board and provides an electrical pathway between the embedded power semiconductor module and the logic printed circuit board. A method of manufacturing the integrated power module is also provided.
Abstract:
A integrated power module with integrated power electronic circuitry and logic circuitry includes an embedded power semiconductor module including one or more power semiconductor dies embedded in a dielectric material, a multi-layer logic printed circuit board with one or more logic dies mounted to a surface of the logic printed circuit board, and a flexible connection integrally formed between the embedded power semiconductor module and the logic printed circuit board. The flexible connection mechanically connects the embedded power semiconductor module to the logic printed circuit board and provides an electrical pathway between the embedded power semiconductor module and the logic printed circuit board. A method of manufacturing the integrated power module is also provided.