Abstract:
A power semiconductor package includes a substrate having a plurality of metal leads, a power semiconductor die attached to a first one of the leads and a magnetic field sensor integrated in the same power semiconductor package as the power semiconductor die and positioned in close proximity to a current pathway of the power semiconductor die. The magnetic field sensor is operable to generate a signal in response to a magnetic field produced by current flowing in the current pathway, the magnitude of the signal being proportional to the amount of current flowing in the current pathway.
Abstract:
A power electronic assembly includes a board having metal layers laminated onto or between electrically insulating layers, and a power device embedded in the board. A first metal layer provides electrical contacts at a first side of the board. A second metal layer provides a thermal contact at a second side of the board. A third metal layer is positioned between the first metal layer and the power device and configured to distribute a load current switched by the power device. A fourth metal layer is positioned between the second metal layer and the power device and configured as a primary thermal conduction path for heat generated by the power device during switching of the load current. A first electrically insulating layer separates the fourth metal layer from the second metal layer so that the fourth metal layer is electrically isolated from but thermally connected to the second metal layer.
Abstract:
A semiconductor chip package includes an electrically conducting carrier and a semiconductor chip disposed over the electrically conducting carrier. The semiconductor chip has a first surface facing the electrically conducting carrier and a second surface opposite the first surface. A metal plate has a first surface mechanically connected to the second surface of the semiconductor chip and a second surface opposite the first surface of the metal plate. The metal plate completely overlaps the second surface of the semiconductor chip. The second surface of the metal plate is at least partially exposed at a periphery of the semiconductor chip package.
Abstract:
An interconnect module includes a metal clip having a first end section, a second end section and a middle section extending between the first and the second end sections. The first end section is configured for external attachment to a bare semiconductor die or packaged semiconductor die attached to a carrier or to a metal region of the carrier. The second end section is configured for external attachment to a different metal region of the carrier or to a different semiconductor die or packaged semiconductor die attached to the carrier. The module further includes a magnetic field sensor secured to the metal clip. The magnetic field sensor is operable to sense a magnetic field produced by current flowing through the metal clip. The interconnect module can be used to form a direct electrical connection between components and/or metal regions of a carrier to which the module is attached.
Abstract:
An interconnect module includes a metal clip having a first end section, a second end section and a middle section extending between the first and the second end sections. The first end section is configured for external attachment to a bare semiconductor die or packaged semiconductor die attached to a carrier or to a metal region of the carrier. The second end section is configured for external attachment to a different metal region of the carrier or to a different semiconductor die or packaged semiconductor die attached to the carrier. The module further includes a magnetic field sensor secured to the metal clip. The magnetic field sensor is operable to sense a magnetic field produced by current flowing through the metal clip. The interconnect module can be used to form a direct electrical connection between components and/or metal regions of a carrier to which the module is attached.
Abstract:
A power electronic assembly includes a board having metal layers laminated onto or between electrically insulating layers, and a laminate inlay embedded in the board. A first metal layer provides electrical contacts at a first side of the board. A second metal layer provides a thermal contact at a second side of the board. A third metal layer is positioned between the first metal layer and the laminate inlay and configured to distribute a load current switched by the laminate inlay. A fourth metal layer is positioned between the second metal layer and the laminate inlay and configured as a primary thermal conduction path for heat generated by the laminate inlay during switching of the load current. A first electrically insulating layer separates the fourth metal layer from the second metal layer so that the fourth metal layer is electrically isolated from but thermally connected to the second metal layer.
Abstract:
A molded semiconductor package arrangement may comprise a die pad configured to support a semiconductor; a set of leads; and a mold structure that is formed to enclose the semiconductor and the die pad within the mold structure. The set of leads and the die pad may be formed from a same piece of conductive material. An electrical contact plane of the set of leads may be offset from a bottom surface of the die pad. The mold structure may include a molded standoff that is beneath the die pad. A bottom surface of the molded standoff may extend below the electrical contact plane of the set of leads by a threshold distance that corresponds to a thickness of the molded standoff.
Abstract:
A power electronic assembly includes a board having metal layers laminated onto or between electrically insulating layers, and a power device embedded in the board. A first metal layer provides electrical contacts at a first side of the board. A second metal layer provides a thermal contact at a second side of the board. A third metal layer is positioned between the first metal layer and the power device and configured to distribute a load current switched by the power device. A fourth metal layer is positioned between the second metal layer and the power device and configured as a primary thermal conduction path for heat generated by the power device during switching of the load current. A first electrically insulating layer separates the fourth metal layer from the second metal layer so that the fourth metal layer is electrically isolated from but thermally connected to the second metal layer.
Abstract:
A transistor device is disclosed. The transistor device includes: a semiconductor body; a source conductor on top of the semiconductor body; a source clip on top of the source conductor and electrically connected to the source conductor; a first active device region arranged in the semiconductor body, covered by the source conductor and the source clip, and including at least one device cell; and a second active device region arranged in the semiconductor body, covered by regions of the source conductor that are not covered by the source clip, and including at least one device cell. The first active device region has a first area specific on-resistance and the second active device region has a second area specific on-resistance, the second area specific on-resistance being greater than the first area specific on-resistance.
Abstract:
A semiconductor package includes a semiconductor die attached to a substrate and a magnetic field sensor included as part of the same semiconductor package as the semiconductor die and positioned in close proximity to a current pathway of the semiconductor die so that the magnetic field sensor can sense a magnetic field produced by current flowing in the current pathway. The magnetic field sensor includes a first magnetic field sensing component galvanically isolated from the current pathway and positioned so that a magnetic field produced by current flowing in the current pathway impinges on the first magnetic field sensing component in a first direction. The magnetic field sensor also includes a second magnetic field sensing component galvanically isolated from the current pathway and positioned so that the magnetic field impinges on the second magnetic field sensing component in a second direction different than the first direction.