Abstract:
A microfabricated optical apparatus that includes a light source driven by a waveform, a turning mirror, and a beam shaping element, wherein the waveform is delivered to the light source by at least one through silicon via. The microfabricated optical apparatus may also include a light-sensitive receiver which generates an electrical signal in response to an optical signal. The electrical signal may be communicated to external devices by at least one additional through silicon via.
Abstract:
A microfabricated optical apparatus that includes a light source or light detector in combination with an integrated turning surface to form a microfabricated optical subassembly. The integrated turning surface may be formed directly in the substrate material using gray scale lithography.
Abstract:
A method for bonding two substrates is described, comprising providing a first and a second silicon substrate, providing a raised feature on at least one of the first and the second silicon substrate, forming a layer of gold on the first and the second silicon substrates, and pressing the first substrate against the second substrate, to form a thermocompression bond around the raised feature. The high initial pressure caused by the raised feature on the opposing surface provides for a hermetic bond without fracture of the raised feature, while the complete embedding of the raised feature into the opposing surface allows for the two bonding planes to come into contact. This large contact area provides for high strength.
Abstract:
Systems and methods for forming an electrostatic MEMS switch that is used to hot switch a source of current or voltage. At least one surface of the MEMS switch is treated with an ion milling machine to reduce surface roughness to less than about 10 nm rms.
Abstract:
Systems and methods for forming an electrostatic MEMS plate switch include forming a deformable plate on a first substrate, forming the electrical contacts on a second piezoelectric substrate, and coupling the two substrates using a hermetic seal. The deformable plate may have at least one shunt bar located at a nodal line of a vibrational mode of the deformable plate, so that the shunt bar remains relatively stationary when the plate is vibrating in that vibrational mode. The second piezoelectric substrate may include lithium tantalate (LiTaO3) or lithium niobate (LiNiO3) or lead zirconate titanate (Pb[Zr(x)Ti(1−x)]O3), or integrated circuits formed thereon.
Abstract:
Systems and methods for forming a compact gas sensor include using a lithographically fabricated, reflective and lengthy gas channel formed in at least two substrate to make a relatively long gas channel. A VCSEL radiation source may be coupled to the channel and a photodiode detector to measure the transmitted light.
Abstract:
A transceiver and interconnect for connecting a plurality of optical cables. In one embodiment, optical sources are joined to a plurality of fiber optic output cables. The structures may use a plurality of ball lenses to collimate the diverging light from the source and launch it down one of the plurality of fibers. Through holes in a silicon substrate may allow the radiation to pass, and these features may be made very precisely.
Abstract:
We describe here a method that employs through substrate vias (TSVs) to frustrate the standing waves that are formed in the metal trace. TSVs may be formed at intervals in the first substrate, electrically coupling the metal bondline to the ground plane.
Abstract:
The present application discloses a method for forming electrical contacts on a semiconductor substrate. The method includes forming a first metal layer over the substrate, and forming a layer of a second metal oxide by sputter deposition of a second metal in an oxygen environment.
Abstract:
Systems and methods for forming an electrostatic MEMS switch include forming a movable cantilevered beam on a first substrate, forming the electrical contacts on a second substrate, and coupling the two substrates using a hermetic seal. Electrical access to the electrostatic MEMS switch may be made by forming vias through the thickness of the second substrate. The cantilevered beam may be formed by etching the perimeter shape in the device layer of an SOI substrate. An additional void may be formed in the movable beam such that it bends about an additional hinge line as a result of the additional void. This may give the beam and switch advantageous kinematic characteristics.