Abstract:
A method may include measuring a frequency difference between an actual frequency and an expected frequency associated with a frequency control calibration signal value for each of a plurality of frequency control calibration signal values during a calibration phase. The method may additionally include generating integral non-linearity compensation values based on the frequency differences measured. The method may further include generating the applied frequency control signal based on a frequency control calibration signal value received by the digital-to-analog converter during the calibration phase. The method may also include generating a compensated frequency control signal value based on a frequency control signal value received by the integral non-linearity compensation module and an integral non-linearity compensation value associated with the frequency control signal value during an operation phase of the wireless communication element.
Abstract:
In accordance with some embodiments of the present disclosure, a calibrated temperature measurement system comprises a resistor, a thermistor, a resistance-to-current converter configured to generate a current signal based on a resistance, and an analog-to-digital converter (ADC) configured to receive a first current signal based on the resistor, convert the first current signal into a first digital signal, receive a second current signal based on the thermistor, and convert the second current signal into a second digital signal. A memory may comprise resistor-characterization information. A calculation stage communicatively coupled to an ADC output may be configured to determine a first digital value based on the first digital signal, determine a second digital value based on the second digital signal, calculate a resistance ratio based on the first digital value and the second digital value, and determine a temperature output value based on the resistance ratio and the resistor-characterization information.
Abstract:
A temperature measurement system is disclosed. In accordance with some embodiments of the present disclosure, a temperature measurement system may comprise a resistor, a thermistor, a resistance-to-current converter configured to generate a current signal based on a resistance, an analog-to-digital converter (ADC) configured to receive a first current signal based on the resistor, convert the first current signal into a first digital signal, receive a second current signal based on the thermistor, and convert the second current signal into a second digital signal, and a calculation stage communicatively coupled to an ADC output and configured to determine a first digital value based on the first digital signal, determine a second digital value based on the second digital signal, calculate a resistance ratio based on the first digital value and the second digital value, and determine a temperature output value based on the resistance ratio.