Abstract:
A new scintillating optical fiber is used in an array as a scintillator plate for imaging with high energy radiation, particles and the like. The scintillating optical fiber has an inner plastic core fiber which is transparent to visible radiation and has an index of refraction of about 1.45 or greater. The inner plastic core fiber has a plastic cladding material which has an index of refraction less than that of the inner plastic core fiber. The inner plastic core fiber contains a polymeric matrix material; a metal moiety; and an organic quench-resistant fluorescent material. The scintillator plates are useful in producing high efficiency and high resolution radiographic systems for x-ray medical diagnosis or non-destructive inspection as well as non-destructive inspection with thermal neutrons. In medical x-ray applications, such as mammography, the need for lower doses of x-rays for a given image quality is met and exceeded by the higher detection efficiency of the scintillator plates and their associated electronic read-out system.
Abstract:
An edge detector for detecting the edge of fabric in a textile folding or guiding device for an industrial sewing machine. The detector includes a light source mounted adjacent to one surface of the fabric as the fabric enters the folder. The light source is positioned for directing light onto the surface of the fabric. A photodetector is located adjacent to the light source for receiving light reflected from the surface of the fabric. The photodetector provides an output signal in response to the light reflected from the surface of the fabric which is indicative of the position of the fabric in the folder.
Abstract:
Embodiments incorporate a method and apparatus for detection of radiation. Embodiments detect fast and/or thermal neutrons. Embodiments detect neutrons in high backgrounds of gamma rays. Embodiments can have high sensitivity and/or high gamma discrimination. Embodiments include a given single material that detects fast neutrons and simultaneously detect gamma rays with moderate energy resolution. Embodiments utilize liquid, viscous liquid, gel, and/or solid scintillating materials. Embodiments incorporate a scintillating matrix, such as a liquid, having a highly polar matrix, such as a liquid solvent, dissolved dyes, and a high concentration of a dissolved organo metallic compound. The use of a single material for a large area detector of fast neutrons and gamma rays can provide material and cost benefits.
Abstract:
Embodiments of the invention provide a scintillator material, a scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material that comprises chromophores. Additional embodiments provide a scintillator material, scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material having one, two, three, or more, organic dyes dissolved therein wherein the polymer material having the one, two, three, or more dyes dissolved therein comprises chromophores. At least one of the dyes, termed the base dye, has a concentration in the range 0.5 to 3.5 mol/L. In a specific embodiment, the base dye has a concentration in the range 1.0 to 3.0 mol/L. This base dye concentration is high enough to achieve a substantial triplet-triplet state annihilation rate despite the negligible diffusion of the dye in the rigid polymer matrix.
Abstract:
The present invention relates to a method and apparatus for manufacturing plastic optical transmission medium. The subject method and apparatus can produce a variety of optical transmission medium, including for example, graded refractive index polymer optical fiber, graded refractive index rod lens, and step index polymer optical fiber. The subject optical transmission medium have improved characteristics and efficiency, due, at least in part, to better control of the profile of the refractive index distribution and stable high temperature operation of the medium. High efficiency of manufacturing can be achieved by the subject method and apparatus which can permit continuous extrusion at high speed.
Abstract:
A new scintillating optical fiber is used in an array as a scintillator plate for imaging with high energy radiation, particles and the like. The scintillating optical fiber has an inner plastic core fiber which is transparent to visible radiation and has an index of refraction of about 1.45 or greater. The inner plastic core fiber has a plastic cladding material which has an index of refraction less than that of the inner plastic core fiber. The inner plastic core fiber contains a polymeric matrix material; a metal moiety; and an organic fluorescent material. The scintillator plates are useful in producing high efficiency and high resolution radiographic systems for x-ray medical diagnosis or non-destructive inspection as well as non-destructive inspection with thermal neutrons. In medical x-ray applications, such as mammography, the need for lower doses of x-rays for a given image quality is met and exceeded by the higher detection efficiency of the scintillator plates and their associated electronic read-out system.